COMMON POOL OF GENERIC ELECTIVES (GE) COURSES Offered by Department of Physics *Category-IV* SEMESTER I

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES

Note: E xamination s cheme a nd m ode s hall be a s pr escribed by t he E xamination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES (GE – 1): MECHANICS

Credit distribution, Eligibility and Pre-requisites of the Course

Course title		Credit dis	stribution a	of the course	Eligibility	Pre-	Department
& Code	Credits	Lecture	Tutorial	Practical/ Practice	criteria	requisite of the course	offering the course
Mechanics GE 1	4	3	0	1	Class XII pass	NIL	Physics and Astrophysics

Learning Objectives

This course reviews the concepts of mechanics learnt at school in a more advanced perspective and goes on to build new concepts. It begins with dynamics of a system of particles and ends with the special theory of relativity. Students will appreciate the concept of rotational motion, gravitation and oscillations. The students will be able to apply the concepts learnt to several real world problems. A brief recapitulation of vector algebra and differential equations is also done to familiarize students with basic mathematical concepts which are necessary for a course on mechanics.

Learning Outcomes

Upon completion of this course, students are expected to understand the following concepts.

- Laws of motion and their application to various dynamical situations. And their applications to conservation of momentum, angular momentum and energy.
- Motion of a simple and compound pendulum
- Application of Kepler's laws to describe the motion of satellites in circular orbit.
- The concept of geosynchronous orbits
- Concept of stress and strain and relation between elastic constants
- Postulates of Special Theory of Relativity, Lorentz transformation, relativistic effects on the mass and energy of a moving body.
- In the laboratory course, after acquiring knowledge of how to handle measuring

instruments (like vernier calliper, screw gauge and travelling microscope) student shall embark on verifying various principles and associated measurable quantities.

SYLLABUS OF GE - 1

THEORY COMPONENT

Unit 1: Recapitulation of Vectors and Ordinary Differential Equation (8 Hours)

Vector algebra, scalar and vector product, gradient of a scalar field, divergence and curl of vectors field

Ordinary Differential Equations: First order homogeneous differential equations, second order homogeneous differential equation with constant coefficients

Unit 2: Fundamentals of Dynamics Hours)

Review of Newton's laws of motion, dynamics of a system of particles, centre of mass, determination of centre of mass for discrete and continuous systems having spherical symmetry, Conservation of momentum and energy, Conservative and non-Conservative forces, work - energy theorem for conservative forces, force as a gradient of potential energy.

Unit 3: Rotational Dynamics and Oscillatory Motion (14 Hours)

Angular velocity, angular momentum, torque, conservation of angular momentum, Moment of inertia, Theorem of parallel and perpendicular axes, Calculation of moment of inertia of discrete and continuous objects (1-D and 2-D).

Idea of simple harmonic motion, Differential equation of simple harmonic motion and its solution, Motion of a simple pendulum and compound pendulum

Unit 4: Gravitation

Hours)

Newton's Law of Gravitation, Motion of a particle in a central force field, Kepler's Laws (statements only), Satellite in circular orbit and applications, geosynchronous orbits

Unit 5: Elasticity

Hours)

Concept of stress and strain, Hooke's law, elastic moduli, twisting torque on a wire, tensile strength, relation between elastic constants, Poisson's ratio, rigidity modulus

Unit 6: Special Theory of Relativity

Hours)

Postulates of Special Theory of Relativity, Lorentz transformation, length contraction, time dilation, relativistic transformation of velocity, relativistic variation of mass, mass-energy equivalence

(5

(10

(3

(5

PRACTICAL COMPONENT (30 Hours)

The teacher is expected to give basic idea and working of various apparatus and instruments related to different experiments. Students should also be given knowledge of recording and analyzing experimental data.

Every student should perform at least 06 experiments from the following list.

- 1) Measurement of length (or diameter) using vernier calliper, screw gauge and travelling microscope.
- 2) Study the random error in observations.
- 3) Determination of height of a building using a sextant.
- 4) Study of motion of the spring and calculate (a) spring constant and, (b) acceleration due to gravity (g)
- 5) Determination of moment of inertia of a flywheel.
- 6) Determination of g and velocity for a freely falling body using digital timing technique.
- 7) Determination of modulus of rigidity of a wire using Maxwell's needle.
- 8) Determination of elastic constants of a wire by Searle's method.
- 9) Determination of value of g using bar pendulum.
- 10) Determination of value of g using Kater's pendulum.

References (for Laboratory Work):

- 1) Advanced practical physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- **2)** Engineering practical physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) Practical physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- 4) A text book of practical physics, I. Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- 5) B. Sc. practical physics, Geeta Sanon, R. Chand and Co., 2016.

Essential readings:

FOR THEORY COMPONENT

- Vector Analysis Schaum's Outline, M.R. Spiegel, S. Lipschutz, D. Spellman, 2nd Edn., 2009, McGraw- Hill Education.
- **2)** An Introduction to Mechanics (2/e), Daniel Kleppner and Robert Kolenkow, 2014, Cambridge University Press.
- **3)** Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kittel, et. al., 2017, McGraw Hill Education
- 4) Mechanics, D. S. Mathur, P. S. Hemne, 2012, S. Chand.
- 5) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.

Suggestive readings

- 1) Feynman Lectures, Vol. 1, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- 2) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 3) University Physics, H. D. Young, R. A. Freedman, 14/e, 2015, Pearson Education.
- 4) Engineering Mechanics, Basudeb Bhattacharya, 2/e, 2015, Oxford University Press
- 5) Physics for Scientists and Engineers, Randall D Knight, 3/e, 2016, Pearson Education.

GENERIC ELECTIVES (GE - 2): MATHEMATICAL PHYSICS

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit dis	stribution of	of the course	Eligibility	Pre-requisite	
		Lecture	Tutorial	Practical/ Practice	criteria	of the course	
Mathematical Physics GE – 2	4	3	1	0	Class XII pass	NIL	

Learning Objectives

The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists. The course will expose students to fundamental computational physics skills and hence enable them to solve a wide range of physics problems.

Learning Outcomes

At the end of this course, the students will be able to,

- Understand functions of several variables.
- Represent a periodic function by a sum of harmonics using Fourier series and their applications in physical problems such as vibrating strings etc.
- Obtain power series solution of differential equation of second order with variable coefficient using Frobenius method.
- Understand properties and applications of special functions like Legendre polynomials, Bessel functions and their differential equations and apply these to various physical problems such as in quantum mechanics.
- Learn about gamma and beta functions and their applications.
- Solve linear partial differential equations of second order with separation of variable method.
- Understand the basic concepts of complex analysis and integration.
- During the tutorial classes, students' skill will be developed to solve more problems related to the concerned topics.

SYLLABUS OF GE – 2

THEORY COMPONENT

Unit 1:

(6 Hours)

Fourier s eries: Periodic functions. Orthogonality of sine and cosine functions, Convergence of Fourier series and Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Even and odd functions and their Fourier expansions (Fourier Cosine Series and Fourier Sine Series).

Unit 2:

(10 Hours)

Frobenius M ethod a nd Spe cial F unctions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre and Bessel Differential Equations.

Unit 3:

(14 Hours)

Some S pecial Integrals: Beta and Gamma Functions and Relation between them. Expression of integrals in terms of Gamma Functions.

Partial D ifferential E quations: Multivariable functions, Partial derivatives, Functions Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular geometry, Solution of 1D wave equation.

Unit 4:

(15 Hours)

Complex A nalysis: Functions of complex variable, limit, continuity, Analytic function, Cauchy-Riemann equations, singular points, Cauchy Goursat Theorem, Cauchy's Integral Formula, Residues, Cauchy's Residue Theorem.

Essential readings:

- 1) Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- **2)** Complex Variables and Applications, J. W. Brown and R. V. Churchill, 7th Ed. 2003, Tata McGraw-Hill
- **3)** Advanced Mathematics for Engineers and Scientists: Schaum Outline Series, M. R Spiegel, 2009, McGraw Hill Education.
- **4)** Applied Mathematics for Engineers and Physicists, L.A. Pipes and L.R. Harvill, 2014, Dover Publications.
- **5)** Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd Ed., 2006, Cambridge University Press.

Suggestive readings

- 1) Mathematical Physics, A. K. Ghatak, I. C. Goyal and S. J. Chua, 2017, Laxmi Publications Private Limited.
- **2)** Advanced Engineering Mathematics, D. G. Zill and W. S. Wright, 5 Ed., 2012, Jones and Bartlett Learning.
- **3)** An introduction to ordinary differential equations, E. A. Coddington, 2009, PHI Learning.
- 4) Differential Equations, George F. Simmons, 2007, McGraw Hill.
- 5) Mathematical methods for Scientists and Engineers, D. A. Mc Quarrie, 2003, Viva Books

GENERIC ELECTIVES (GE – 3): WAVES AND OPTICS

Credit distribution, Eligibility and Pre-requisites of the Course

	Credits	Credit di	stribution	of the course	Eligibility	Pre-requisite of the course	
Course title & Code		Lecture	Tutorial	Practical/ Practice	criteria		
Waves and Optics GE 3	4	3	0	1	Class XII pass	NIL	

Learning Objectives

This coursework reviews the concept of waves and optics learnt at school level from a more advanced perspective and builds new concepts. This course is divided into two main parts. The first part deals with vibrations and waves. The second part pertains to optics and provides the details of interference, diffraction and polarization.

Learning Outcomes

After the completion of this course, the students will have learnt the following.

- Simple harmonic motion, superposition principle and its application to find the resultant of superposition of harmonic oscillations.
- Concepts of vibrations in strings.
- Interference as superposition of waves from coherent sources.
- Basic concepts of Diffraction: Fraunhoffer and Fresnel Diffraction.
- Elementary concepts of the polarization of light.

SYLLABUS OF GE – 3

THEORY COMPONENT

Unit 1:

(10 Hours)

Superposition of Harmonic Oscillations: Simple harmonic motion (SHM). Linearity and Superposition Principle. Superposition of two collinear harmonic oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of two perpendicular harmonic oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses.

Unit 2:

(5 Hours)

Waves Motion: Types of waves: Longitudinal and Transverse (General idea). Travelling waves in a string, wave equation. Energy density. Standing waves in a string - modes of vibration. Phase velocity.

Unit 3:

(12 Hours)

Interference of L ight: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Interference: Division of amplitude and division of wave front. Young's Double Slit experiment. Fresnel's Biprism. Phase change on reflection: Stoke's treatment. Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: measurement of wavelength and refractive index.

Unit 4:

(12 Hours)

Diffraction: Fraunhofer diffraction - Single slit, Double slit and Diffraction grating. Fresnel Diffraction - Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge using half-period zone analysis.

Unit 5:

(6 Hours)

Polarization: Transverse nature of light waves. Plane polarized light. Production and detection of linearly polarized light. Malus's Law. Idea of circular and elliptical polarization.

PRACTICAL COMPONENT (30 Hours)

Every student must perform at least 05 experiments out of the list following experiments.

- 1) To determine the frequency of an electrically maintained tuning fork by Melde's experiment and to verify $\lambda^2 T$ Law.
- 2) To study Lissajous Figures.
- 3) Familiarization with Schuster's focusing and determination of the angle of prism.
- 4) To determine the refractive index of the material of a prism using sodium light.
- 5) To determine the dispersive power of a prism using mercury light.
- 6) To determine wavelength of sodium light using Newton's rings.
- 7) To determine wavelength of sodium light using a plane diffraction grating.
- 8) To verify Malus's Law.
- 9) To determine the wavelength of Laser light using single slit diffraction. (Due care should be taken not to see Laser light source directly as it may cause injury to eyes.)

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, Asia Publishing House
- 2) A Text Book of Practical Physics, Indu Prakash and Ramakrishna, Kitab Mahal
- **3)** An advanced course in practical physics, D. Chattopadhyay and P. C. Rakshit, New Central Book Agency

Essential readings:

FOR THEORY COMPONENT

- 1) The Physics of Waves and Oscillations: N K Bajaj, Tata Mcgraw Hill
- 2) Optics: Ajoy Ghatak, Seventh edition, Mcgraw Hill
- 3) Principle of Optics: B. K. Mathur and T. P. Pandya, Gopal Printing Press
- 4) Optics: Brij Lal and N. Subramanyam, S. Chand
- 5) The Fundamentals of Optics: A. Kumar, H. R. Gulati and D. R. Khanna, R. Chand

Suggestive readings:

- 1) Vibrations and Waves: A. P. French, CRC
- 2) The physics of Vibrations and Waves: H. J. Pain, Wiley
- 3) Fundamentals of Optics: Jenkins and White, McGraw Hill
- 4) Optics: E. Hecht and A R. Ganesan, Pearson, India
- 5) Introduction to Optics: F. Pedrotti, L. M. Pedrotti and L. S. Pedrotti, Pearson, India

GENERIC ELECTIVES (GE - 6): INTRODUCTORY ASTRONOMY

Course title & Code		Credit di	stribution	of the course	Eligibility	Pre-requisite of the course	
	Credits	Lecture	Tutorial	Practical/ Practice	criteria		
Introductory Astronomy GE 6	4	3	1	0	Class XII pass	NIL	

Credit distribution, Eligibility and Pre-requisites of the Course

Learning Objectives

This course is meant to introduce undergraduate students to the wonders of the Universe. Students will understand how astronomers over millennia have come to understand mysteries of the universe using laws of geometry and physics, and more recently chemistry and biology. They will be introduced to the Indian contribution to astronomy starting from ancient times up to the modern era. They will learn about diverse set of astronomical phenomenon, from the daily and yearly motion of stars and planets in the night sky which they can observe themselves, to the expansion of the universe deduced from the latest observations and cosmological models. Students will also be introduced to internet astronomy and the citizen science research platform in astronomy. The course presupposes school level understanding of mathematics and physics.

Learning Outcomes

- After completing this course, student will gain an understanding of,
- Different types of telescopes, diurnal and yearly motion of astronomical objects, astronomical coordinate systems and their transformations
- Brightness scale for stars, types of stars, their structure and evolution on HR diagram
- Components of solar system and its evolution
- Current research in detection of exoplanets
- Basic structure of different galaxies and rotation of the Milky Way galaxy
- Distribution of chemical compounds in the interstellar medium and astrophysical conditions necessary for the emergence and existence of life
- Internet based astronomy and the collaborative citizen astronomy projects

• India's contribution to astronomy, both in ancient times and in modern era.

SYLLABUS OF GE – 6

Unit 1:

(8 Hours)

Introduction to Astronomy and Astronomical Scales: History of astronomy, wonders of the Universe, overview of the night sky, diurnal and yearly motions of the Sun, size, mass, density and temperature of astronomical objects, basic concepts of positional astronomy: Celestial sphere, Astronomical coordinate systems, Horizon system and Equatorial system

Unit 2:

(6 Hours)

Basic P arameters of S tars: S tellar energy sources, determination of distance by parallax method, aberration, proper motion, brightness, radiant flux and luminosity, apparent and absolute magnitude scales, distance modulus, determination of stellar temperature and radius, basic results of Saha ionization formula and its applications for stellar astrophysics, stellar spectra, dependence of spectral types on temperature, luminosity classification, stellar evolutionary track on Hertzsprung-Russell diagram

Unit 3:

(8 Hours)

Astronomical I nstruments: Observing through the atmosphere (Scintillation, Seeing, Atmospheric Windows and Extinction). Basic Optical Definitions for Telescopes: Magnification, Light Gathering Power, Limiting magnitude, Resolving Power, Diffraction Limit. Optical telescopes, radio telescopes, Hubble space telescope, James Web space telescope, Fermi Gamma ray space telescope.

Astronomy in the Internet Age: Overview of Aladin Sky Atlas, Astrometrica, Sloan Digital Sky Survey, Stellarium, virtual telescope

Citizen Science Initiatives: Galaxy Zoo, SETI@Home, RAD@Home India

Unit 4:

(8 Hours)

Sun and the solar system: Solar parameters, Sun's internal structure, solar photosphere, solar atmosphere, chromosphere, corona, solar activity, origin of the solar system, the nebular model, tidal forces and planetary rings

Exoplanets: Detection methods and characterization

Unit 5:

(12 Hours)

Physics of Galaxies: Basic structure and properties of different types of Galaxies, Nature of rotation of the Milky Way (Differential rotation of the Galaxy), Idea of dark matter

Cosmology an d A strobiology: Standard Candles (Cepheids and SNe Type1a), Cosmic distance ladder, Olber's paradox, Hubble's expansion, History of the Universe, Chemistry of life, Origin of life, Chances of life in the solar system

Unit 6:

(4 Hours)

Astronomy in I ndia: Astronomy in ancient, medieval and early telescopic era of India, current Indian observatories (Hanle-Indian Astronomical Observatory, Devasthal Observatory, Vainu Bappu Observatory, Mount Abu Infrared Observatory, Gauribidanur Radio Observatory, Giant Metre-wave Radio Telescope, Udaipur Solar Observatory, LIGO -

India) (qualitative discussion), Indian astronomy missions (Astrosat, Aditya)

Essential readings:

- 1) Seven Wonders of the Cosmos, Jayant V Narlikar, Cambridge University Press
- 2) Fundamental of Astronomy, H. Karttunen et al. Springer
- 3) Modern Astrophysics, B.W. Carroll and D.A. Ostlie, Addison-Wesley Publishing Co.
- **4)** Introductory Astronomy and Astrophysics, M. Zeilik and S.A. Gregory, Saunders College Publishing.
- **5)** The Molecular Universe, A.G.G.M. Tielens (Sections I, II and III), Reviews of Modern Physics, Volume 85, July-September, 2013
- 6) Astronomy in India: A Historical Perspective, Thanu Padmanabhan, Springer

Useful websites for astronomy education and citizen science research platform

- 1) https://aladin.u-strasbg.fr/
- 2) http://www.astrometrica.at/
- 3) https://www.sdss.org/
- 4) http://stellarium.org/
- 5) https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
- 6) https://setiathome.berkeley.edu/
- 7) https://www.radathomeindia.org/

Suggestive readings:

- 1) Explorations: Introduction to Astronomy, Thomos Arny and Stephen Schneider, McGraw Hill
- 2) Astrophysics Stars and Galaxies K D Abhyankar, Universities Press
- **3)** Textbook of Astronomy and Astrophysics with elements of cosmology, V.B. Bhatia, Narosa Publication.
- **4)** Baidyanath Basu, An introduction to Astrophysics, Prentice Hall of India Private Limited.
- **5)** The Physical Universe: An Introduction to Astronomy, F H Shu, University Science Books

SEMESTER II

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENTS

Course Title & Code	Credits	Cre	dit distri	bution rse	Eligibility	Pre-requisite of the course	
	Creuits	Lecture	Tutorial	Practical	criteria		
Electricity and Magnetism	4	3	0	1	Class XII pass	NIL	
GE – 11					1		

LEARNING OBJECTIVES

This course begins with theorems of network analysis which are required to perform the associated experiments in the laboratory. Then course delves into the elementary vector analysis, an essential mathematical tool for understanding static electric field and magnetic field. By the end of the course, the student should appreciate Maxwell's equations.

LEARNING OUTCOMES

At the end of this course the student will be able to,

- Apply Coulomb's law to line, surface, and volume distributions of charges.
- Apply Gauss's law of electrostatics to distribution of charges
- Understand the effects of electric polarization and concepts of bound charges in dielectric materials
- Understand and calculate the vector potential and magnetic field of arbitrary current distribution
- Understand the concept of bound currents and ferromagnetism in magnetic materials

SYLLABUS OF GE – 11

THEORY COMPONENT

Unit 1: (15 Hours)

Network Analysis: Superposition, Thevenin, Norton theorems and their applications in DC and AC circuits with more than one source, Maximum Power Transfer theorem for AC circuits Mathematical Preliminaries: Concept of scalar and vector fields, Gradient of a scalar field, Divergence and curl of vector fields and their physical interpretation, Conservative forces and Laplace and Poisson equations.

Concept of a line integral of a scalar and vector field, surface integral of vector fields and volume integral, Gauss's theorem, Stoke's theorem.

Unit 2: (15 Hours)

Electric Field and Electric Potential for continuous charge distributions: Electric field due to a line charge, surface charge and volume charge distributions, Electric field vector as negative gradient of scalar potential, Ambiguities of Electric potential, Differential and integral forms of Gauss's Law, Applications of Gauss's Law to various charge distributions with spherical, cylindrical and planar symmetries, Uniqueness theorem

Electric Field in Matter: Bound charges due to polarization and their physical interpretation. Average electric field inside a dielectric, Electric Field in spherical and cylindrical cavities of a dielectric, Displacement vector and its boundary conditions, Gauss' Law in the presence of dielectrics, Linear dielectrics: electric susceptibility and dielectric constant, Boundary value problems with linear dielectrics.

Unit 3: (15 Hours)

Magnetic Field: Divergence and curl of magnetic field B, Magnetic field due to arbitrary current distribution using Biot-Savart law, Ampere's law, integral and differential forms of Ampere's Law, Vector potential and its ambiguities.

Magnetic Properties of Matter: Magnetization vector, Bound Currents, Magnetic Intensity, Differential and integral form of Ampere's Law in the presence of magnetised materials, Magnetic susceptibility and permeability, Ferromagnetism (Hund's rule)

Electrodynamics: Faraday's Law, Lenz's Law, inductance, Electromotive force, Ohm's Law $(\vec{J} = \sigma \vec{E})$, Energy stored in a Magnetic Field. Charge Conservation, Continuity equation, Differential and integral forms of Maxwell's equations in matter.

References:

Essential Readings:

- 1) Introduction to Electrodynamics, D. J. Griffiths, 4th Edn., 2015, Pearson Education India Learning Private Limited.
- 2) Schaum's Outlines of Electromagnetics, M. Nahvi and J. A. Edminister, 2019, McGraw-Hill Education.
- 3) Electromagnetic Fields and Waves, Paul Lorrain and Dale Corson, 1991, W. H. Freeman.
- 4) Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
- 5) Network, Lines and Fields, John D. Ryder, 2nd Edn., 2015, Pearson.
- 6) Introductory Circuit Analysis, R. Boylestead, 2016, Pearson.
- 7) Electricity and Magnetism, Tom Weideman, University of California Davis. [url: https://zhu.physics.ucdavis.edu/Physics9C-C_2021/Physics%209C_EM%20by%20Tom%20Weideman.pdf]

Additional Readings:

- 1) Feynman Lectures Vol. 2, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education
- 2) Electricity, Magnetism and Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- 3) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley

PRACTICAL COMPONENT- 30 Hours

Learning Outcome:

- To understand working of Arduino Microcontroller System
- To use Arduino to measure time, count events and time between events
- To use Arduino to measure voltage/current/resistance
- To use Arduino to measure various physical parameters like magnetic field

Unit I (Mandatory): Arduino Programming

Introduction to Arduino Microcontroller platform. Getting acquainted with the Arduino IDE and Basic Sketch structure. Digital Input and output. Measuring time and events. Measuring analog voltage. Generating analog voltage using Pulse Width Modulation. Serial communication and serial monitor. Programming using Interrupts.

Unit II: Exploring electrical properties of matter using Arduino (at least one experiment)

- To study the characteristics of a series RC Circuit.
- To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- Diode Characteristics:
 - To study characteristics of diode and estimate Boltzman constant.
 - To study characteristics of LED and estimate Planck's constant

Unit III: Exploring magnetic properties of matter using Arduino

• To verify Faraday's law and Lenz's law by measuring induced voltage across a coil subjected to varying magnetic field. Also, estimate dipole moment of the magnet.

Unit IV: DC and AC Bridges (at least one experiment)

- To compare capacitances using de Sauty Bridge
- To determine a Low Resistance by Carey Foster Bridge

Unit V: Network Theorems

(at least one experiment)

- To verify the Thevenin and Norton theorems
- To verify the Superposition, and Maximum Power Transfer Theorems

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th Ed.2011, Kitab Mahal
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVE (GE - 12): THERMAL PHYSICS

Course Title	Credits	Credit distribution of the course			Eligibility	Pre-requisite	Department
& Code	CT curts	Lecture	e Tutorial Practical	criteria	of the course	course	
Thermal Physics	4	3	0	1	Class XII pass	NIL	Physics and Astrophysics
GE – 12							

LEARNING OBJECTIVES

This course will review the basic concepts of thermodynamics, kinetic theory of gases with a brief introduction to statistical mechanics. The primary goal is to understand the applications of fundamental laws of thermodynamics to various systems and processes. This coursework will also enable the students to understand the connection between the macroscopic observations of physical systems and microscopic behaviour of atoms and molecule through statistical mechanics.

LEARNING OUTCOMES

At the end of this course, students will,

- Get an essence of the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations. They are also expected to learn Maxwell's thermodynamic relations.
- Know the fundamentals of the kinetic theory of gases, Maxwell-Boltzman distribution law, mean free path of molecular collisions, viscosity, thermal conductivity and diffusion.
- Learn about the black body radiations, Stefan- Boltzmann's law, Rayleigh-Jean's law and Planck's law and their significances.
- Learn the basics of quantum statistical distributions, viz., the Bose-Einstein statistics and the Fermi-Dirac statistics.

In the laboratory course, the students are expected to measure of Planck's constant using black body radiation, determine Stefan's constant, coefficient of thermal conductivity of a bad conductor and a good conductor, determine the temperature coefficient of resistance, study variation of thermo-emf across two junctions of a thermocouple with temperature etc.

<u>SYLLABUS OF GE – 12</u>

THEORY COMPONENT

Unit 1: (12 Hours)

Laws of Thermodynamics: Fundamental basics of Thermodynamic system and variables, Zeroth Law of Thermodynamics and temperature, First law and internal energy, various thermodynamical processes, Applications of First Law: general relation between C_P and C_V , work done during various processes, Compressibility and Expansion Coefficient, reversible and irreversible processes, Second law: Kelvin-Planck and Clausius statements, Carnot engine, Carnot cycle and theorem, basic concept of Entropy, Entropy changes in reversible and irreversible processes, Clausius inequality, Entropy-temperature diagrams.

Unit 2: (08 Hours)

Thermodynamical Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Clausius Clapeyron Equation, Expression for $(C_P - C_V)$, C_P/C_V , TdS equations, energy equations for ideal gases.

Unit 3: (8 Hours)

Kinetic Theory of Gases: Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (zeroth order only), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case).

Unit 4: (7 Hours)

Theory of Radiation: Blackbody radiation, Spectral distribution, Derivation of Planck's law, Deduction of Wien's law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.

Unit 5: (10 Hours)

Statistical Mechanics: Macrostate and Microstate, phase space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann law, Fermi-Dirac distribution law - Bose-Einstein distribution law - comparison of three statistics.

References:

Essential Readings:

- 1) A Treatise on Heat, Meghnad Saha, and B. N. Srivastava, 1969, Indian Press.
- 2) Heat and Thermodynamics, M. W. Zemasky and R. Dittman, 1981, McGraw Hill.
- 3) Thermodynamics, Kinetic theory and statistical thermodynamics, F. W. Sears and G. L. Salinger. 1988, Narosa.
- 4) Thermal Physics, A. Kumar and S. P. Taneja, 2014, R. Chand Publications.
- 5) Thermal Physics: S. C. Garg, R. M. Bansal and C.K. Ghosh, 2nd Ed. Tata McGraw-Hill.

Additional Readings:

1) Concepts in Thermal Physics: Blundell and Blundell, 2nd Ed. 2009, Oxford Univ. Press.

- 2) An Introduction to Thermal Physics: D. Schroeder 2021, Oxford Univ. Press (earlier published by Pearsons).
- 3) Heat, Thermodynamics and Statistical Physics, Brij Lal, N. Subrahmanyam and P. S. Hemne, S. Chand and Company.

PRACTICAL COMPONENT- 30 Hours

- Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the thermal physics lab, including necessary precautions.
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab.

Every student must perform at least four experiments from the following list.

- 1) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2) Measurement of Planck's constant using black body radiation.
- 3) To determine Stefan's Constant.
- 4) To determine the coefficient of thermal conductivity of Cu by Searle's Apparatus.
- 5) To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method by steam or electrical heating.
- 6) To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
- 7) To study the variation of thermos-emf across two junctions of a thermocouple with temperature.

References (For Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal.
- 3) A Laboratory Manual of Physics for Undergraduate Classes, D. P. Khandelwal, 1985, Vani Publication.
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press.
- 5) An Advanced Course in Practical Physics: D. Chattopadhyay and P. C. Rakshit, New Central Book Agency

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVE (GE - 13): MODERN PHYSICS

Course Title & Code	Credits	Cre	dit distri of the cou	bution rse	Eligibility	Pre-requisite of the course	
	creates	Lecture	Tutorial	Practical	criteria		
Modern Physics							
	4	3	0	1	Class XII pass	NIL	
GE – 13							

LEARNING OBJECTIVES

The objective of this course is to teach the physics foundation necessary for learning various topics in modern physics which are crucial for understanding atoms, molecules, photons, nuclei and elementary particles. These concepts are also important to understand phenomena in Laser physics, condensed matter physics and astrophysics.

LEARNING OUTCOMES

After getting exposure to this course, the following topics would have learnt,

- Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics, laying the foundation of modern physics.
- Formulation of Schrodinger equation and the idea of probability interpretation associated with wave-functions.
- The spontaneous and stimulated emission of radiation, optical pumping and population inversion, Basic lasing action.
- The properties of nuclei like density, size, binding energy, nuclear force and structure of atomic nucleus, liquid drop model and mass formula.
- Radioactive decays like alpha, beta, gamma decay. Neutrino, its properties and its role in theory of beta decay.
- Fission and fusion: Nuclear processes to produce nuclear energy in nuclear reactor and stellar energy in stars.

In the laboratory course, the students will get opportunity to measure Planck's constant, verify photoelectric effect, and determine e/m of electron and work function of a metal. They will also find wavelength of Laser sources by single and double slit experiment, wavelength and angular spread of He-Ne Laser using plane diffraction grating.

<u>SYLLABUS OF GE – 13</u>

THEORY COMPONENT

Unit 1: (10 Hours)

Origin of Modern Physics: Blackbody Radiation: Failure of explanation from classical theory; Planck's idea of a quantum; Quantum theory of Light: Photo-electric effect and Compton scattering, de Broglie wavelength and matter waves; Davisson-Germer experiment; Wave description of particles by wave packets, Group and Phase velocities and relation between them.

Unit 2: (10 Hours)

Problems with Rutherford model: Instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen-like atoms and their spectra.

Uncertainty principle: Gamma ray microscope thought experiment; Wave-particle duality leading to Heisenberg uncertainty principle; Impossibility of an electron being in the nucleus, Energy-time uncertainty principle; origin of natural width of emission lines

Unit 3: (10 Hours)

Basics of quantum Mechanics: Two-slit interference experiment with photons and electrons; Concept of wave functions, linearity and superposition, Time independent Schrodinger wave equation for non-relativistic particles; Momentum and Energy operators; physical interpretation of a wave function, probabilities, normalization and probability current densities in one dimension. Problem: One dimensional infinitely rigid box. An application: Quantum dot.

Unit 4: (05 Hours)

X-rays: Ionizing Power, X-ray Diffraction, Bragg's Law. Critical Potentials, X-rays-Spectra: Continuous and Characteristic X-rays, Moseley's Law.

LASERs: Properties and applications of Lasers. Emission (spontaneous and stimulated emissions) and absorption processes, Metastable states, components of a laser and lasing action.

Unit 5: (10 Hours)

Nuclear Physics: Size and structure of atomic nucleus and its relation with atomic weight; Nature of nuclear force, Stability of the nucleus; N-Z graph, Drip line nuclei, Binding Energy, Liquid Drop model: semi-empirical mass formula.

Radioactivity: Different equilibrium, Alpha decay; Beta decay: energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation:

Fission and fusion: Mass deficit and generation of energy; Fission: nature of fragments and emission of neutrons. Fusion and thermonuclear reactions driving stellar evolution (brief qualitative discussions only).

References:

Essential Readings:

- 1) Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- 2) Modern Physics by R. A. Serway, C. J. Moses and C. A. Moyer, 3rd edition, Thomson Brooks Cole, 2012.
- 3) Modern Physics for Scientists and Engineers by S. T. Thornton and A Rex, 4th edition, Cengage Learning, 2013.
- 4) Concepts of Nuclear Physics by B. L. Cohen, Tata McGraw Hill Publication, 1974.
- 5) Quantum Mechanics: Theory and Applications, Ajoy Ghatak and S. Lokanathan, Laxmi Publications, 2019

Additional Readings:

- 1) Six Ideas that Shaped Physics: Particle Behave like Waves, T.A. Moore, 2003, McGraw Hill.
- 2) Thirty years that shook physics: the story of quantum theory, George Gamow, Garden City, NY: Doubleday, 1966.
- 3) New Physics, ed. Paul Davies, Cambridge University Press (1989).
- 4) Quantum Theory, David Bohm, Dover Publications, 1979.
- 5) Lectures on Quantum Mechanics: Fundamentals and Applications, eds. A. Pathak and Ajoy Ghatak, Viva Books Pvt. Ltd., 2019
- 6) Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- 7) Basic ideas and concepts in Nuclear Physics: An introductory approach by K Heyde, third edition, IOP Publication, 1999.

PRACTICAL COMPONENT – 30 Hours

- Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the modern physics lab, including necessary precautions.
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab.

Every student must perform at least 06 experiments from the following list of experiments.

- 1) Measurement of Planck's constant using black body radiation and photo-detector.
- 2) Photo-electric effect: estimate Planck's constant using graph of maximum energy of photoelectrons versus frequency of light.
- 3) To determine work function of material of filament of directly heated vacuum diode.
- 4) To determine the Planck's constant using LEDs, using at least 4 LEDs.
- 5) To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6) To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 7) To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 8) To show the tunneling effect in tunnel diode using I-V characteristics.
- 9) To determine the wavelength of laser source using diffraction of single slit.

10) To determine wavelength and angular spread of He-Ne laser using plane diffraction grating.11) To determine the wavelength of laser source using diffraction of double slits.

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Advanced Level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3) A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press.
- 5) B. Sc. Practical Physics, Geeta Sanon, R. Chand, 2016.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVE (GE - 14): INTRODUCTORY ASTRONOMY

Course Title & Code	Credits	Cre	dit distril of the cou	bution rse	Eligibility	Pre-requisite	
	Lecture		Tutorial	Practical	criteria	of the course	
Introductory Astronomy	4	3	1	0	Class XII pass	NIL	
GE – 14					_		

LEARNING OBJECTIVES

This course is meant to introduce undergraduate students to the wonders of the Universe. Students will understand how astronomers over millennia have come to understand mysteries of the universe using laws of geometry and physics, and more recently chemistry and biology. They will be introduced to the Indian contribution to astronomy starting from ancient times up to the modern era. They will learn about diverse set of astronomical phenomenon, from the daily and yearly motion of stars and planets in the night sky which they can observe themselves, to the expansion of the universe deduced from the latest observations and cosmological models. Students will also be introduced to internet astronomy and the citizen science research platform in astronomy. The course presupposes school level understanding of mathematics and physics.

LEARNING OUTCOMES

After completing this course, student will gain an understanding of,

- Different types of telescopes, diurnal and yearly motion of astronomical objects, astronomical coordinate systems and their transformations
- Brightness scale for stars, types of stars, their structure and evolution on HR diagram
- Components of solar system and its evolution
- Current research in detection of exoplanets
- Basic structure of different galaxies and rotation of the Milky Way galaxy
- Distribution of chemical compounds in the interstellar medium and astrophysical conditions necessary for the emergence and existence of life
- Internet based astronomy and the collaborative citizen astronomy projects
- India's contribution to astronomy, both in ancient times and in modern era.

<u>SYLLABUS OF GE – 14 (Lecture-45 hours)</u>

THEORY COMPONENT

Unit 1:

Introduction to Astronomy and Astronomical Scales: History of astronomy, wonders of the Universe, overview of the night sky, diurnal and yearly motions of the Sun, size, mass, density and temperature of astronomical objects, basic concepts of positional astronomy: Celestial sphere, Astronomical coordinate systems, Horizon system and Equatorial system

Unit 2:

Basic Parameters of Stars: Stellar energy sources, determination of distance by parallax method, aberration, proper motion, brightness, radiant flux and luminosity, apparent and absolute magnitude scales, distance modulus, determination of stellar temperature and radius, basic results of Saha ionization formula and its applications for stellar astrophysics, stellar spectra, dependence of spectral types on temperature, luminosity classification, stellar evolutionary track on Hertzsprung-Russell diagram

Unit 3:

Astronomical Instruments: Observing through the atmosphere (Scintillation, Seeing, Atmospheric Windows and Extinction). Basic Optical Definitions for Telescopes: Magnification, Light Gathering Power, Limiting magnitude, Resolving Power, Diffraction Limit. Optical telescopes, radio telescopes, Hubble space telescope, James Web space telescope, Fermi Gamma ray space telescope.

Astronomy in the Internet Age: Overview of Aladin Sky Atlas, Astrometrica, Sloan Digital Sky Survey, Stellarium, virtual telescope

Citizen Science Initiatives: Galaxy Zoo, SETI@Home, RAD@Home India

Unit 4:

Sun and the solar system: Solar parameters, Sun's internal structure, solar photosphere, solar atmosphere, chromosphere, corona, solar activity, origin of the solar system, the nebular model, tidal forces and planetary rings

Exoplanets: Detection methods

Unit 5:

Physics of Galaxies: Basic structure and properties of different types of Galaxies, Nature of rotation of the Milky Way (Differential rotation of the Galaxy), Idea of dark matter Cosmology and Astrobiology: Standard Candles (Cepheids and SNe Type1a), Cosmic distance ladder, Olber's paradox, Hubble's expansion, History of the Universe, Chemistry of life, Origin of life, Chances of life in the solar system

Unit 6:

Astronomy in India: Astronomy in ancient, medieval and early telescopic era of India, current Indian observatories (Hanle-Indian Astronomical Observatory, Devasthal Observatory, Vainu Bappu Observatory, Mount Abu Infrared Observatory, Gauribidanur Radio Observatory, Giant Metre-wave Radio Telescope, Udaipur Solar Observatory, LIGO-India) (qualitative discussion), Indian astronomy missions (Astrosat, Aditya)

References:

Essential Readings:

- 1) Seven Wonders of the Cosmos, Jayant V Narlikar, Cambridge University Press
- 2) Fundamental of Astronomy, H. Karttunen et al. Springer
- 3) Modern Astrophysics, B. W. Carroll and D. A. Ostlie, Addison-Wesley Publishing Co.
- 4) Introductory Astronomy and Astrophysics, M. Zeilik and S. A. Gregory, Saunders College Publishing.
- 5) The Molecular Universe, A. G. G. M. Tielens (Sections I, II and III), Reviews of Modern Physics, Volume 85, July-September, 2013
- 6) Astronomy in India: A Historical Perspective, Thanu Padmanabhan, Springer

Useful websites for astronomy education and citizen science research platform

- 1) https://aladin.u-strasbg.fr/
- 2) http://www.astrometrica.at/
- 3) https://www.sdss.org/
- 4) http://stellarium.org/
- 5) https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
- 6) https://setiathome.berkeley.edu/
- 7) https://www.radathomeindia.org/

Additional Readings:

1) Explorations: Introduction to Astronomy, Thomos Arny and Stephen Schneider, McGraw

Hill

- 2) Astrophysics Stars and Galaxies K. D. Abhyankar, Universities Press
- 3) Textbook of Astronomy and Astrophysics with elements of cosmology, V. B. Bhatia, Narosa Publication.
- 4) Baidyanath Basu, An introduction to Astrophysics, Prentice Hall of India Private Limited.
- 5) The Physical Universe: An Introduction to Astronomy, F. H. Shu, University Science Books

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

SEMESTER III

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES

GENERIC ELECTIVE (GE – 4): INTRODUCTION TO ELECTRONICS

Course Title &	Credite	Cre	dit distrib of the cou	oution rse	Eligibility	Pre-
Code	Creuits	Lecture	Tutorial	Practical	Criteria	requisites
INTRODUCTION TO ELECTRONICS	4	2	0	2	Passed 12 th Class	NIL
GE-4						

LEARNING OBJECTIVES

This paper aims to introduce fundamentals of electronics to students not majoring in physics. Basics of Analog and Digital Electronics are envisioned to be introduced with emphasis on applications of diodes, transistor (BJT), operational amplifier, 555 timer, number systems, basic gates and digital circuits.

LEARNING OUTCOMES

At the end of this course, students will be able to imbibe the following learning outcomes:

- This paper aims to describe the concepts of basic electronics in real-life. In this course, students will receive an introduction to the principle, performance and applications of basic electronic components.
- The students will gain an insight on the existence of analog and digital signals and their necessity. Specifically they would know the difference between active and passive electronic components including filters.
- Students will learn about diodes and its uses in rectification (analog) and switching properties thereof (digital). They will gain an insight into working principle of Photodiodes, Solar Cells, LED and Zener Diode as Voltage Regulator.
- They will gain an understanding of construction and working principle of bipolar junction transistors (BJTs). Specifically, they would understand the fundamentals of amplification.
- Students will be able to seamlessly understand and work on different numbers systems including binary, octal, hexadecimal besides decimal.
- They will learn about the existence of digital gates besides their need in electronic decision making thus laying the foundation for basic artificial intelligence.
- Students will learn the fundamentals of operation amplifier and their regular application including those used to sum, subtract and compare two or more signals.
- They will gain an in-depth understanding of working of Cathode Ray Oscilloscope which effectively acts as an electronic stethoscope for analysis of electronic signal in any laboratory.
- This paper will essentially connect the text book knowledge with the most common electronic components available that influence design of technology in a real world.
- The project component included in the practical section is envisaged to impart much

needed hands-on skill sets to the student. Therein he/she gets an experience in correctly choosing components required to build an electronic circuit, identifying the procurement source (online/offline) besides gaining valuable experience in trouble-shooting

SYLLABUS OF GE - 4

THEORY COMPONENT

Unit – I

Analog and digital signals, Active and passive electronic components, RC integrator and differentiator (use as low pass and high pass filter): Qualitative analysis and frequency response.

Unit – II

I-V characteristics of a diode and it's applications as rectifier (Half and full wave rectifier configurations), Clipper and Clamper circuits (Qualitative Analysis only). Principle and working of Photodiodes, Solar Cells, LED and Zener Diode as Voltage Regulator.

Unit – III

Input and output characteristics of a bipolar junction transistor (BJT) in CB and CE configurations, identifying active, cut-off and saturation regions. Transistor parameters alpha and beta, and relation between them. Application of BJT as a switch and an amplifier in CE configuration (Graphical Analysis)

Unit – IV

Review of basic and Universal Logic Gates, Binary to decimal and Decimal to binary conversion, binary addition and subtraction using 2's complement, Half and Full Adder, Half and Full Subtractor using NAND Gates.

Unit – V

Operational Amplifier (Black Box Approach): Pinout diagram of IC 741; Characteristics of Op-amp (Voltage Gain, offset voltage, slew rate, CMRR, Bandwidth, Input Impedance and Output Impedance). Open loop configuration and its application as a comparator and zero crossing detector. Closed Loop Configuration and its Applications as Inverting and Noninverting Amplifier (Voltage gain using concept of virtual ground), Summing Amplifier and Subtractor

Unit – VI

Block diagram of CRO, Voltage and frequency measurement. Pin-out diagram of IC 555 and its application as Astable Multivibrator

References:

Essential Readings:

- 1) Electronic Devices, Thomas L Floyd; Pearsons Education
- 2) Op Amps and Linear Integrated Circuits, Ramakant A Gaekwad, Pearson Education
- 3) Microelectronic circuits, A. S. Sedra, K. C. Smith, A. N. Chandorkar, Oxford University Press
- 4) Electronic Principles, A. Malvino, D. J. Bates, 7th Edition, Tata Mc-Graw Hill Education, 2018

(6 Hours)

(4 Hours)

(6 Hours)

(4 Hours)

(6 Hours)

(4 Hours)

- 5) Electronic Devices and circuit theory, R. L. Boylestad and L. D. Nashelsky, Pearson Learning
- 6) Digital Principles and Applications, Donald P Leach, Albert Paul Malvino and Goutam Saha, Pearson Education, Tata Mc-Graw Hill.

Additional Readings:

- 1) Electronic Fundamental and Applications, John D Ryder; PHI Learning
- 2) Electronic Devices and Circuits, J. Millman and C. C. Halkias, Tata Mc-Graw Hill.

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

Every student must perform either "04 Experiments and 01 Project" or "At least six experiments"

- 1) Voltage and frequency measurement using CRO
- 2) Study of RC circuits as an Integrator and Differentiator
- 3) IV characteristics for pn junction diode and Zener diode
- 4) Study of Zener diode as voltage regulator circuit
- 5) Study of transistor characteristics in CE configuration
- 6) Half Adder and Full Adder using NAND gates
- 7) Half Subtractor and Full Subtractor using NAND gates
- 8) Design Astable Multivibrator using IC 555
- 9) Study the Frequency Response of Op Amp in Inverting and Non Inverting configurations.
- 10) Study of zero crossing detector using Op amp IC 741
- 11) Addition of two dc voltages using OP Amp in inverting and non-inverting configurations.

References (for Laboratory Work):

- 1) An Analog Electronics Companion: Basic Circuit Design for Engineers and Scientists by Scott Hamilton, Cambridge University Press
- 2) Practical Electronics by Ralph Morrison, Wiley
- Practical Electronic Design for Experimenters (ELECTRONICS) by Louis E. Frenzel, McGraw Hill Education
- 4) Practical Electronics for Inventors by Paul Scherz and Simon Monk, McGraw Hill
- 5) Analog Electronics with Op-amps: A Source Book of Practical Circuits (Electronics Texts for Engineers and Scientists) – by Anthony Peyton and Vincent Walsh, Cambridge University Press

GENERIC ELECTIVE (GE – 5): SOLID STATE PHYSICS

Course Title &	Cradita	Cre	dit distrib of the cou	oution rse	Eligibility	Pre-requisite
Code	Creuits	Lecture	Tutorial	Practical	Criteria	of the course
SOLID STATE PHYSICS	4	3	1	0	Passed 12 th Class	NIL
GE-5						

LEARNING OBJECTIVES

This course introduces the basic concepts and principles required to understand the various properties exhibited by condensed matter, especially solids. It enables the students to appreciate how the interesting and wonderful properties exhibited by matter depend upon its atomic and molecular constituents. It also communicates the importance of solid state physics in modern society. Emphasis should be given on the applications and uses of solids.

LEARNING OUTCOMES

On successful completion of the module students should be able to,

- Elucidate the concept of lattice, basis and symmetry in crystals. Learn to appreciate structure and symmetry of solids.
- Understand the elementary lattice dynamics and its influence on the properties of materials.
- Describe the main features of the physics of electrons in solids: origin of energy bands.
- Introduction to dia-, para-, ferri and ferro-magnetic properties of solids and their applications.
- Introduction to dielectric properties exhibited by solids and the concept of polarizability.
- Introduction to superconductivity.

SYLLABUS OF GE - 5

THEORY COMPONENT

UNIT – I

(21 Hours)

Review of Atomic Structure and bonding in solids: Classification of matter as solid, liquid and gas: salient features and properties, Qualitative discussion on Rutherford Model and Bohr model of atom, qualitative idea about discrete energy levels, wave-mechanical concept of the atom, forces between atoms, Ionic bonding, covalent bonding, metallic bonding, Hydrogen bonding and Van der Waals bonding, Properties of solids exhibiting different bonding.

Crystal structure: Periodicity in crystals: lattice points and space lattice, translational, rotational and reflection symmetry elements, lattice with a basis and crystal structure, unit cells and lattice parameters, Bravais lattices (in 2D and 3D) and crystal systems SC, BCC and FCC lattices, conventional and primitive unit cell, Wigner Seitz unit cell, amorphous and crystalline materials. Planes, Miller Indices, directions, density of atoms in different planes, inter-planar spacing, concept of Reciprocal Lattice, Brillouin zones (2 D lattice)

Atomic Packing and Imperfections in crystals: Packing of spheres in 2D and 3D, hexagonal close packing, packing fraction of SC, FCC, and BCC. Point defects and line defects and their consequences on the crystal properties

X-rays: Their generation and properties, Bragg's law and Laue Condition, single crystal method and powder diffraction method, simple problems related to X-Ray diffraction in SC, BCC, FCC

UNIT – II

Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustic and optical phonons, qualitative description of the phonon spectrum in solids.

UNIT – III

Electrical properties of metals: Free electron theory of metals (Drude model), its success and drawbacks, concept of relaxation time, collision time and mean free path, electrical conductivity, mobility and Ohm's law, thermal conductivity of metals, Wiedemann-Franz-Lorentz law.

Band Theory: The Kronig-Penney model (Qualitative idea), Band Gap, direct and indirect bandgap, concept of effective mass, Hall Effect (Metal and Semiconductor).

Optical properties of solids: (Qualitative) Absorption process, transmission and reflectance in solids. Discussion on photoconductivity, photoluminescence.

UNIT – IV

Magnetic Properties of solids: Dia-, Para-, Ferri- and Ferro- magnetic Materials, definition in terms of susceptibility. Weiss's Theory of FerromagnetismandFerromagnetic Domains (qualitative treatment only),B-H curve, soft and hard material and their applications(discussion only) as cores in generators, transformers and electromagnets, energy lossin Hysteresis curve.

UNIT - V

Dielectric Properties of solids: Dipole moment, polarization, local electric field in solids. Depolarization field, electric susceptibility, various sources of polarizability, piezo-, pyro- and ferroelectric materials and their applications(discussion only) as transducers, pickups, sensors, actuators, delay lines.

UNIT - VI

Superconductivity: (Qualitative treatment only) Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, applications of superconductors. Discussion on applications in MRI, particle collider, power transmission, magnetic levitation etc.

References:

Essential Readings:

- 1) Solid State Physics, M. A. Wahab, 3rd Edition, Narosa Publications, 2015
- 2) Solid State Physics, S. O. Pillai, New Age International Publishers
- Introduction to Solid State Physics, Charles Kittel, 8th Edition, Wiley India Pvt. Ltd, 2004
 Elements of Solid State Physics, J. P. Srivastava, 2nd Edition, Prentice-Hall of India, 2006
- 5) Solid State Physics, A. J. Dekker, Macmillan Education, 2008

(3 Hours)

(4 Hours)

(3 Hours)

(4 Hours)

(10 Hours)

Additional Readings:

- 1) Introduction to Solids, Leonid V. Azaroff, Tata Mc-Graw Hill, 2004
- 2) Solid State Physics, N. W. Ashcroft and N. D. Mermin, Cengage Learning, 1976
- 3) Elementary Solid State Physics, M. Ali Omar, Pearson, 2006
- 4) Solid State Physics, Rita John, McGraw Hill, 2014
- 5) Superconductivity: A Very short Introduction Stephen J Blundell Audiobook
- 6) Crystallography applied to solid state physics, A. R. Verma and O. N. Srivastava, New Age International Publishers, 2005

GENERIC ELECTIVE (GE – 7): BIOLOGICAL PHYSICS

Course Title &	Cradita	Cre	dit distrib of the cou	oution rse	Eligibility	Pre-requisite
Code	Creuits	Lecture	Tutorial	Practical	Criteria	of the course
BIOLOGICAL PHYSICS	4	3	1	0	Passed 12 th Class	NIL
GE-7						

LEARNING OBJECTIVES

This course familiarizes the students with the basic facts and ideas of biology from a quantitative perspective. It shows them how ideas and methods of physics enrich our understanding of biological systems at diverse length and time scales. The course also gives them a flavour of the interface between biology, chemistry, physics and mathematics.

LEARNING OUTCOMES

After completing this course, students will

- Know basic facts about biological systems, including single cells, multicellular organisms and ecosystems from a quantitative perspective.
- Gain familiarity with various biological processes at different length and time scales, including molecular processes, organism level processes and evolution.
- Appreciate how fundamental principles of physics can be applied to gain an understanding of biological systems.
- Get exposure to complexity of life at i) the level of cell, ii) level of multi cellular organism and iii) at macroscopic system ecosystem and biosphere.
- Gain a systems level perspective on organisms and appreciate how networks of interactions of many components give rise to complex behaviour.
- Perform mathematical modelling of certain aspects of living systems.
- Get exposure to models of evolution.

SYLLABUS OF GE 7

THEORY COMPONENT

Unit – I

Overview: The boundary, interior and exterior environment of living cells. Processes: exchange of matter and energy with environment, metabolism, maintenance, reproduction, evolution. Self-replication as a distinct property of biological systems. Time scales and spatial scales.

Unit - II

Molecules of life: Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling. Typical populations of molecules of various

(4 Hours)

(12 Hours)

352

types present in cells, their rates of production and turnover. Energy required to make a bacterial cell. Simplified mathematical models of transcription and translation.

Unit - III

Molecular motion in cells: Random walks and applications to biology: Diffusion; models of macromolecules. Molecular motors: Transport along microtubules. Flagellar motion: bacterial chemotaxis.

Unit - IV

(12 Hours) The complexity of life: At the level of a cell: Intracellular biochemical networks. Dynamics of metabolic networks; the stoichiometric matrix. The implausibility of life based on a simplified probability estimate, and the origin of life problem. At the level of a multicellular organism: Numbers and types of cells in multicellular organisms. Cellular differentiation and development. Brain structure: neurons and neural networks. At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems. Allometric scaling laws.

Unit - V

Evolution: The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution.

References:

Essential Readings:

- 1) Biological Physics: Energy, Information, Life, P. Nelson, W H Freeman & Co, NY, 2004
- 2) Cell Biology by the Numbers, R. Milo and R. Phillips, Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2016
- 3) Physical Biology of the Cell, R. Phillips et al, 2nd edition, Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2013
- 4) Evolution, M. Ridley, Blackwell Publishers, 2009, 3rd edition

Additional Readings:

- 1) Physics in Molecular Biology, K. Sneppen and G. Zocchi, Cambridge University Press, Cambridge UK, 2005
- 2) Biophysics: Searching for Principles, W. Bialek, Princeton University Press, Princeton USA, 2012

(12 Hours)

(5 Hours)

GENERIC ELECTIVE (GE – 8):

NUMERICAL ANALYSIS AND COMPUTATIONAL PHYSICS

Course Title &	Credits	Credit distribution of the course			Eligibility	Pre-requisite of the	
Code		Lecture	Tutorial	Practical	Criteria	course	
NUMERICAL ANALYSIS AND COMPUTATIONAL PHYSICS GE – 8	4	2	0	2	Passed 12 th Class	Differential calculus, integration and ordinary differential calculus at the class 12 level.	

LEARNING OBJECTIVES

The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists. To expose students to fundamental computational physics skills and hence enable them to solve a wide range of physics problems.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Develop numerical methods to understand errors and solution of Algebraic and Transcendental equations.
- Understand interpolation, least square fitting, Numerical differentiation, Numerical integration and solution of ordinary differential equations.

In the laboratory course, the students will learn to,

- apply appropriate numerical method to solve selected physics problems using user defined and inbuilt functions
- solve non-linear equations
- perform least square fitting of the data taken in physics lab by user defined functions
- Interpolate a data by polynomial approximations
- numerically integrate a function and
- solve first order initial value problems numerically

SYLLABUS OF GE - 8

THEORY COMPONENT

Unit – I

Errors and iterative Methods: Truncation and Round-off Errors. Floating Point Computation, Overflow and underflow. Single and Double Precision Arithmetic, Iterative Methods. Review of Taylor's Theorem and Mean value Theorem (No proofs).

Solutions of Algebraic and Transcendental Equations: Bisection method, Secant Method, Newton Raphson method. Comparison and error estimation

(8 Hours)

Unit – II

Interpolation: Concept of Interpolation, Lagrange Form of interpolating polynomial, Newton's Forward and Backward Differences, Newton's Forward and Backward Interpolation Formulas.

Regression: Algorithm for Least square fitting of a straight line, Fitting a Power function, and Exponential Function using conversion to linear relation by transforming the variables.

Unit – III

(7 Hours) Numerical Differentiation: Approximating the derivative of a function given in the form of discrete data, Numerical Computation of First and second order derivative of a function given in closed form (using Taylor's expansion), errors in Numerical Differentiation.

Numerical Integration: Newton Cotes Quadrature methods for evaluation of definite integrals numerically, Trapezoidal Rule, Simpson's 1/3 and 3/8 Rules. Derivation of composite formulae for these methods and discussion of error estimation

Unit – IV

(5 Hours)

Solution of Ordinary Differential Equations: First Order ODE's: solution of Initial Value problems: (1) Euler's Method and (2) Runge Kutta methods

References:

Essential Readings:

- 1) Elementary Numerical Analysis, K. E. Atkinson, 3rd Edition, Wiley India Edition, 2007
- 2) Introduction to Numerical Analysis, S. S. Sastry, 5th Edition, PHI Learning Pvt. Ltd, 2012
- 3) Computational Physics, Darren Walker, 1st Edition, Scientific International Pvt. Ltd, 2015
- 4) Applied numerical analysis, Cutis F. Gerald and P. O. Wheatley, Pearson Education, 2007

Additional Readings:

- 1) An Introduction to Computational Physics, T. Pang, Cambridge University Press, 2010
- 2) Numerical Recipes: The art of scientific computing, William H. Press, Saul A. Teukolsky and William Vetterling, Cambridge University Press, 3rd Edition, 2007
- 3) Computational Problems for Physics, R. H. Landau and M. J. Páez, CRC Press, 2018

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

The aim of this lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- The course will consist of practical sessions and lectures on Python.
- Assessment is to be done not only on the programming but also on the basis of formulating the problem.
- The list of recommended programs is suggestive only. Students should be encouraged to do more physics applications. Emphasis should be given to formulate a physics problem as mathematical one and solve by computational methods.
- At least 6 programs must be attempted (taking at least one from each unit).

(10 Hours)

Unit I

Basic Elements of Python: The Python interpreter, the print statement, comments, Python as simple calculator, objects and expressions, variables (numeric, character and sequence types) and assignments, mathematical operators. Strings, Lists, Tuples and Dictionaries, type conversions, input statement, list methods. List mutability, formatting in the print statement

Control Structures: Conditional operations, if, *if-else*, *if-elif-else*, *while* and *for* Loops, indentation, break and continue, List comprehension. Simple programs for practice like solving quadratic equations, temperature conversion etc.

Functions: Inbuilt functions, user-defined functions, local and global variables, passing functions, modules, importing modules, math module, making new modules. Writing functions to perform simple operations like finding largest of three numbers, listing prime numbers, etc. Generating pseudo random numbers

Recommended List of Programs

- (a) Make a function that takes a number N as input and returns the value of factorial of N. Use this function to print the number of ways a set of m red and n blue balls can be arranged.
- (b) Generate random numbers (integers and floats) in a given range and calculate area and volume of regular shapes with random dimensions.
- (c) Generate data for coordinates of a projectile and plot the trajectory. Determine the range, maximum height and time of flight for a projectile motion.

Unit II

NumPy Fundamentals: Importing *Numpy*, Difference between List and NumPy array, Adding, removing and sorting elements, creating arrays using *ones()*, *zeros()*, *random()*, *arange()*, *linspace()*. Basic array operations (*sum, max, min, mean, variance*), 2-d arrays, matrix operations, reshaping and transposing arrays, savetxt() and loadtxt().

Plotting with Matplotlib: *matplotlib.pyplot* functions, Plotting of functions given in closed form as well as in the form of discrete data and making histograms.

Recommended List of Programs

- (a) Given a function in closed form y=f(x), generate numpy arrays for x and y and plot y as a function of x with appropriate scale and legend.
- (b) Generate data for coordinates of a projectile and plot the trajectory.
- (c) Given the expressions in closed form, plot the displacement-time and velocity-time graph for the un-damped, under damped critically damped and over damped oscillator.

Unit III

Root Finding

- a) Determine the depth up to which a spherical homogeneous object of given radius and density will sink into a fluid of given density.
- b) Solve transcendental equations like $\alpha = \tan(\alpha)$.
- c) To approximate nth root of a number up to a given number of significant digits.

Unit IV

Least Square fitting

Make function for least square fitting, use it for fitting given data (x,y) and estimate the parameters a, b as well as uncertainties in the parameters for the following cases:

a) Linear
$$(y = ax + b)$$

b) Power law $(y = ax^{b})$

c) Exponential $(y = ae^{bx})$

Interpolation:

- (a) Write program to determine the unique polynomial of a degree n that agrees with a given set of (n+1) data points (x_i, y_i) and use this polynomial to find the value of y at a value of x not included in the data.
- (b) Generate a tabulated data containing a given number of values $(x_i, f(x_i))$ of a function f(x) and use it to interpolate at a value of x not used in table.

Unit V

Numerical Differentiation

- a) Given displacement at equidistant time values, calculate velocity and acceleration and plot them.
- b) Compute the left, right and central approximations for derivative of a function given in closed form. Plot both the function and derivative (forward, backward and central derivatives) on the same graph. Plot the error as a function of step size on a log-log graph, study the behaviour of the plot as step size decreases and hence discuss the effect of round off error.

Numerical Integration:

- a) Given acceleration at equidistant time values, calculate position and velocity and plot them.
- b) Use integral definition of ln(x) to compute and plot ln(x) in a given range. Use trapezoidal and Simpson methods and compare the results.
- c) Verify the rate of convergence of the composite Trapezoidal and Simpson methods by approximating the value of a given definite integral.

References

- 1) Documentation at the Python home page (https://docs.python.org/3/) and the tutorials there (https://docs.python.org/3/tutorial/).
- 2) Documentation of NumPy and Matplotlib: https://numpy.org/doc/stable/user/ and https://matplotlib.org/stable/tutorials/
- 3) Computational Physics, Darren Walker, 1st Edition, Scientific International Pvt. Ltd, 2015
- 4) Introduction to Numerical Analysis, S. S. Sastry, 5th Edition, PHI Learning Pvt. Ltd, 2012
- 5) Elementary Numerical Analysis, K. E. Atkinson, 3rd Edition, Wiley India Edition, 2007
- 6) Applied numerical analysis, Cutis F. Gerald and P. O. Wheatley, Pearson Education, 2007

GENERIC ELECTIVE (GE – 9): APPLIED DYNAMICS

Course Title &	Credits	Cre	edit distrik of the cou	oution rse	Eligibility	Pre-requisite	
Code		Lecture	Tutorial	Practical	Criteria	of the course	
APPLIED DYNAMICS	4	3	1	0	Passed 12 th Class	NIL	
GE – 9							

LEARNING OBJECTIVES

This course introduces the main topics of low-dimensional nonlinear systems, with applications to a wide variety of disciplines, including physics, engineering, mathematics, chemistry, and biology. This course begins with the first order dynamical system and the idea of phase space, flows and trajectories and ends with the elementary fluid dynamics. The nature of the subject demands that the tutorials should include only computational problems.

LEARNING OUTCOMES

Upon successful course completion, a student will be able to:

- Demonstrate understanding of the concepts that underlay the study of dynamical systems.
- Learn various forms of dynamics and different routes to chaos.
- Understand basic Physics of fluids and its dynamics

SYLLABUS OF GE 9

THEORY COMPONENT

Unit – I

Introduction to Dynamical systems: Definition of a continuous first order dynamical system. The idea of phase space, flows and trajectories. Concept of stability and un-stability. Simple mechanical systems as first order dynamical systems: simple and damped harmonic oscillator. Fixed points, attractors, stability of fixed points, basin of attraction, notion of qualitative analysis of dynamical systems. Examples of dynamical systems - Population models e.g. exponential growth and decay, logistic growth, predator-prey dynamics.

Unit – II

Introduction to Chaos: Bifurcations: Saddle-Node bifurcation, Transcritical bifurcation, Pitchfork bifurcation and Hopf bifurcation. Chaos in nonlinear equations: Logistic map and Lorenz equations. Sensitivity to initial states. Parameter dependence: steady, periodic and chaotic states. Cobweb iteration. Simple examples from physics, chemistry, engineering and lifesciences.

Unit – III

Elementary Fluid Dynamics: Basic physics of fluids: The continuum hypothesis-concept of

(22 Hours)

(16 Hours)

(7 Hours)

358

fluid element or fluid parcel; Definition of a fluid- shear stress; Fluid properties- viscosity, thermal conductivity, mass diffusivity and equation of state.

References:

Essential Readings:

- 1) Nonlinear Dynamics and Chaos, S. H. Strogatz, Westview Press, 2nd Edition, 2014
- 2) Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer New York, 1995
- 3) Nonlinear Dynamics: Integrability, Chaos and Patterns, M. Lakshmanan and S. Rajasekar, Springer, 2003
- 4) An Introduction to Fluid Dynamics, G. K. Batchelor, Cambridge University Press, 2002
- 5) Fluid Mechanics, 2nd Edition, L. D. Landau and E. M. Lifshitz, Pergamon Press, Oxford, 1987

nlerelight

REGISTRAR

SEMESTER IV

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES

GENERIC ELECTIVE (GE - 15): QUANTUM MECHANICS

Course Title & Code	Credits	Credit distribution of the course			Eligibility	Dro requisite of the course	
		Lecture	Tutorial	Practical	Criteria	The requisite of the course	
Quantum Mechanics GE – 15	4	3	1	0	Class XII Pass with Science	GE Modern Physics of this course or its equivalent	

LEARNING OBJECTIVES

The development of quantum mechanics has revolutionized the human life. In this course, the students will be exposed to the probabilistic concepts of basic non-relativistic quantum mechanics and its applications to understand the sub atomic world.

LEARNING OUTCOMES

After completing this course, the students will be able to,

- Learn the methods to solve time-dependent and time-independent Schrödinger equation. •
- Characteristics of an acceptable wave function for any sub atomic particle in various potentials.
- Applications of the Schrodinger equation to different cases of potentials namely infinite and finite potential well, step potential, rectangular potential barrier, harmonic oscillator potential.
- Solve the Schrodinger equation in 3-D.
- Understand the spectrum and eigen functions for hydrogen atom

SYLLABUS OF GE - 15

THEORY COMPONENT

Unit – I

(10 Hours)

Review of Schrodinger wave equation, applicability of operator, eigenvalues, eigenfunction, normalisation, expectation value to various kinds of potential, Superposition Principle, linearity of Schrodinger equation, General solution as a linear combination of discrete stationary states, Observables as operators, Commutator of position and momentum operators, Ehrenfest's theorem. Applicability to various kinds of wave functions

Unit – II

(15 Hours) General discussion of bound states in an arbitrary potential: Continuity of wave function, boundary conditions and emergence of discrete energy levels. Application to energy eigen states for a particle in a finite square potential well, reflection and transmission across step potential and rectangular potential barrier. Fourier transforms and momentum space wave function, time evolution of Gaussian wave packets, Uncertainty principle

Unit – III

(10 Hours)

Harmonic oscillator: Energy eigen values and eigen states of a 1-D harmonic oscillator using algebraic method (ladder operators) and using Hermite polynomials. Zero point energy and uncertainty principle. Applications to various kinds of wave functions

Unit – IV

(10 Hours)

Schrödinger Equation in three dimensions: Probability and probability densities in 3D. Schrödinger equation in spherical polar coordinates, its solution for Hydrogen atom solution using separation of angular and radial variables, Angular momentum operator, quantum numbers and spherical harmonics. Radial wave functions from Frobenius method, Orbital angular momentum quantum numbers 1 and ml, s, p, d shells

References:

Essential Readings:

- Quantum Mechanics: Theory and Applications, A. Ghatak and S. Lokanathan, 6th edition, 2019, Laxmi Publications, New Delhi.
- 2) Introduction to Quantum Mechanics, D. J. Griffith, 2nd edition, 2005, Pearson Education.
- A Text book of Quantum Mechanics, P. M. Mathews and K. Venkatesan, 2nd edition, 2010, McGraw Hill.
- 4) Quantum Mechanics, B. H. Bransden and C. J. Joachain, 2nd edition, 2000, Prentice Hall
- 5) Quantum Mechanics: Concepts and Applications, 2nd edition, N. Zettili, A John Wiley and Sons, Ltd., Publication
- 6) Atomic Physics, S. N. Ghoshal, 2010, S. Chand and Company

Additional Readings:

- 1) Quantum Mechanics for Scientists & Engineers, D. A. B. Miller, 2008, Cambridge University Press.
- 2) Introduction to Quantum Mechanics, R. H. Dicke and J. P. Wittke, 1966, Addison-Wesley Publications
- 3) Quantum Mechanics, L. I. Schiff, 3rd edition, 2010, Tata McGraw Hill.
- 4) Quantum Mechanics, R. Eisberg and R. Resnick, 2nd edition, 2002, Wiley
- 5) Quantum Mechanics, B. C. Reed, 2008, Jones and Bartlett Learning.
- 6) Quantum Mechanics, W. Greiner, 4th edition, 2001, Springer.
- 7) Introductory Quantum Mechanics, R. L. Liboff, 4th edition, 2003, Addison Wesley

GENERIC ELECTIVE (GE - 16) INTRODUCTION TO EMBEDDED SYSTEM DESIGN

Course Title &	Credits	Cre	dit distrik of the cou	oution rse	Eligibility	Pre-requisite of the course
Code		Lecture	Tutorial	Practical	Criteria	
Introduction to					Class XII	
$\frac{\text{Embedded System}}{\text{Design}}$	4	2	0	2	Pass with Science	NIL

LEARNING OBJECTIVES

This paper aims to introduce the basic concepts or fundamentals of embedded system design to students not majoring in physics. The course covers the comprehensive introduction to embedded systems, their role and application areas in our daily life. Basic elements needed to design a typical embedded system are discussed to provide the students a broader perspective. Specific applications of embedded systems which are a part of our daily life were discussed. In the end Arduino Uno is introduced.

LEARNING OUTCOMES

Upon completion of this course, students will be able to,

- Learn about an embedded system and how it is different than a general purpose computing system like computer or laptop etc.
- The student should be able to identify various embedded systems available around us in our daily life.
- Classify embedded systems based on generation, complexity and performance, major applications areas etc.
- Explain the domains and areas of applications of embedded systems. The students should be able to get a broader perspective of different embedded systems available in industry, telecom, photography, homes, automobile, aviation and ship industry etc.
- Explain the roles and uses of various components like microcontroller, memory, sensors and actuators, interface types etc. of embedded systems.
- Know the basic characteristics and quality attributes that any typical embedded system must possess.
- This paper is designed in such a way that the students will be able to connect the textbook knowledge with basic design and working of the various embedded systems present in our daily life. By the end of this course the student will have a fairly good idea of embedded systems and the gained knowledge will be helpful in predicting the possible design and working of an unknown system. Arduino Uno is introduced so that students can learn how to use different sensors to control different processes.

SYLLABUS OF GE - 16

THEORY COMPONENT

UNIT – I - Introduction to Embedded Systems

Embedded systems, historical background, difference between an embedded systems and general computing systems, classification of embedded systems based on generation, complexity and performance, major applications areas, purpose of embedded systems like in collection/storage/representation, data communication, data/signal processing, data monitoring, control, application specific user interface.

Unit – II - Elements of Embedded System

Core of the embedded system: General purpose and domain specific processors like microprocessors, microcontrollers and digital signal processors, application specific integrated circuits (ASICs), programmable logic devices (PLDs), commercial off-the-shelf components (COTS), reduced instruction set computing (RISC) and complex instruction set computing (CISC), Harvard vs Von-Neumann architecture, different types of memory (RAM, ROM, Storage etc) their classification and different versions, reset circuit, oscillator unit

Unit – III - Peripheral devices, sensors and actuators

General discussion on light emitting dodes (LEDs), 7-segment LED display, piezo buzzer, push button switch, keypad or keyboard (discuss design using push button switches), relay (single pole single throw), LDR, thermistor, IR sensor, ultrasonic sensor, opto-coupler, DC motors, servo motor, stepper motor (unipolar and bipolar)

Unit – IV - Communication Interface

Serial and parallel interface, universal serial bus (USB), Infra-red data transfer, bluetooth (BT), Wi-Fi, general packet radio Service (GPRS), 3G, 4G, LTE

Unit – V - Characteristics and quality attributes of an embedded systems (3 Hours)

Characteristics: Application and domain specific, reactive and real time, operation under harsh environments, distributed or stand alone, size and weight, power consumption Operational and non-operational attributes: response time, throughput, reliability, maintainability, security, safety, testability and debug-ability, evolvability, portability, cost and revenue

Unit – VI - Applications of Embedded Systems

General discussion on the design and working of washing machine, refrigerator, microwave oven, automobiles, mobile phones, hearing aid device, electrocardiogram (ECG), AC or TV remote control system, smart watch, digital camera and laser printers etc.

Unit – VII - Introduction to Arduino

Pin diagram and description of Arduino UNO, basic programming and applications

References:

Essential Readings:

- 1) Introduction to embedded system, K. V. Shibu, 1st edition, 2009, McGraw Hill
- 2) Embedded Systems: Architecture, Programming and Design, R. Kamal, 2008, Tata McGraw Hill
- 3) Embedded Systems and Robots, S. Ghoshal, 2009, Cengage Learning.
- 4) Embedded Microcomputer systems: Real time interfacing, J. W. Valvano, 2011, Cengage Learning
- 5) Embedded System, B. K. Rao, 2011, PHI Learning Pvt. Ltd.
- 6) Programming Arduino: Getting Started with Sketches, S. Monk, 2nd edition, McGraw Hill

(6 Hours)

(6 Hours)

(2 Hours)

(6 Hours)

(3 Hours)

(4 Hours)

7) Arduino: Getting Started With Arduino and Basic Programming with Projects by E. Leclerc

Additional Readings:

- The 8051 Microcontroller and Embedded Systems Using Assembly and C, M. A. Mazidi, J. G. Mazidi and R. D. McKinlay, 2nd edition, 2007, Pearson Education
- 2) Microprocessors and Microcontrollers, K. Kant, 2nd edition, 2016, PHI learning Pvt. Ltd.
- 3) The 8051 Microcontroller, Ayala, 3rd edition, Cengage learning

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

- Every student must perform at least six experiments from the following list
- Mandatory exercise for all students: Familiarization with power supply, function generator, CRO/DSO, multimeter, bread board etc. Measure the frequency and amplitude (pp or rms) of a given signal using CRO/DSO. (The purpose is to acquaint the students with these instruments so that they can have a basic understanding of these instruments).

ARDUINO based Experiments:

- 1) Flashing LEDs ON/OFF after a given delay.
- 2) Design a simple transmitter and receiver circuit using IR LED and a detector and use it for obstacle detection.
- 3) Interface a simple relay circuit to switch ON and OFF a dc motor/LED.
- 4) Interface DC motor to Arduin Uno and rotate it clockwise and anticlockwise.
- 5) Interface Servo motor to Arduin Uno and rotate it clockwise and anticlockwise for a given angle.
- 6) Interface an ADC and read the output of the LDR sensor. Display the value on the serial monitor.
- 7) To design an alarm system using an Ultrasonic sensor.
- 8) To design a counter/Motion sensor alarm using IR Led and Detector
- 9) To design a circuit to control ON/OFF of LED light using LDR.
- 10) To design a circuit to control ON/OFF of a process using a thermistor.
- 11) To design a thermistor based thermometer.
- 12) Control the speed of the DC motor using LDR.

References for laboratory work:

- 1) Arduino Programming: 3 books in 1 The Ultimate Beginners, Intermediate and Expert Guide to Master Arduino Programming, R. Turner
- 2) Arduino: Getting Started With Arduino and Basic Programming with Projects, E. Leclerc
- 3) Basic Electronics: A text lab manual, P. B. Zbar, A. P. Malvino, M. A. Miller, 1994, McGraw Hill.
- 4) Electronic Devices and circuit theory, R. L. Boylestad and L. D. Nashelsky, 2009, Pearson
- 5) Electronics: Fundamentals and Applications, J. D. Ryder, 2004, Prentice Hall.
- 6) Modern Electronic Instrumentation and Measurement Tech., Helfrick and Cooper, 1990, PHI Learning.

GENERIC ELECTIVE (GE - 17) NANO PHYSICS

Course Title &	Credits	Cre	dit distrib of the cou	oution rse	Eligibility	Pre-requisite of the course
Code		Lecture	Tutorial	Practical	Criteria	
Nano Physics GE – 17	4	2	0	2	Class XII Pass with Science	NIL

LEARNING OBJECTIVES

The syllabus introduces the basic concepts of nanomaterials, their synthesis, properties exhibited by them and finally few applications. Various nanomaterial synthesis/growth methods and characterizations techniques are discussed to explore the field in detail. The effect of dimensional confinement of charge carries on the electrical, optical and structural properties will be discussed. Interesting experiments which shape this filed like conductance quantization in 2DEG (Integer Quantum Hall Effect) and coulomb blockade are introduced. The concept of micro- and nano-electro mechanical systems (MEMS and NEMS) and important applications areas of nanomaterials are discussed.

LEARNING OUTCOMES

On successful completion of the course students should be able to,

- Explain the difference between nanomaterials and bulk materials and their property difference.
- Explain various methods for the synthesis/growth of nanomaterials.
- Explain the role of confinement on the density of state function and so on the various properties exhibited by nanomaterials compared to bulk materials.
- Explain the concept of quasi-particles such as excitons and how they influence the optical properties.
- Explain the direct and indirect band gap semiconductors, radiative and non-radiative processes and the concept of luminescence.
- Explain the structure of 2DEG system and its importance in quantum transport experiments, like integer quantum Hall effect and conductance quantization.
- Explain the conductance quantization in 1D structure and its difference from the 2DEG system.
- Explain the necessary and sufficient conditions required to observe coulomb blockade, single electron transistor and the scope of these devices.
- Explain how MEMS and NEMS devices are produced and their applications.

SYLLABUS OF GE - 17

THEORY COMPONENT

Unit – I – Introduction

(3 Hours)

Basic introduction to nano-science and technology - Implications on nanoscience on fields like Physics, Chemistry, Biology and Engineering, Classifications of nanostructured materials

Unit – II - Nanoscale Systems (8 Hours) Brief review of Schrodinger equation and its applications in- Infinite potential well, potential

Brief review of Schrodinger equation and its applications in- Infinite potential well, potential step and potential box problems, band structure and density of states of 3D and 2D systems in detail and qualitatively for 1D and 0D, confinement of charges in nanostructures their consequences on electronic and optical properties.

as quantum dots (0D), nanowires (1D), Thin films (2D) and Multilayered materials or super lattices; introduction to properties like mechanical, electronic, optical, magnetic and thermal properties and how they change at nano scale dimensions to motivate students (qualitative

Unit – III - Properties of Nano Scale systems

Time and length scales (diffusion, elastic and inelastic lengths etc.) of electrons in nanostructured materials, Carrier transport in nanostructures: diffusive and ballistic transport 2D naomaterials: Conductance quantization in 2DEG in GaAs and integer quantum hall effect (semi-classical treatment)

1D nanomaterials: Conductance quantization in 1D structures using split gate in 2DEG system (Qualitative)

0D nanomaterials: Charging effect, Coulomb Blockade effect, Single Electron Transfer (SET) device

Basic understanding of excitons in semiconductors and their consequence on optical properties of the material

Unit – IV - Synthesis of Nanomaterials (Qualitative)

Top down and Bottom up approach, Ball milling, Spin Coating

Vacuum deposition: Physical vapor deposition (PVD): Thermal evaporation, Sputtering, Chemical vapor deposition (CVD).

Preparation of colloidal solutions of Metals, Metal Oxide nanoparticles

Unit – V - Applications (Qualitative)

Micro Electromechanical Systems (MEMS), Nano-electromechanical Systems (NEMS), Applications of nanomaterials as probes in medical diagnostics and targeted drug delivery, sunscreen, lotions, and paints and other examples to give broader perspective of applications of nanomaterials

References:

only).

Essential Readings:

- Introduction to Nanotechnology, C. P. Poole and Jr. Frank J. Owens, 1st edition, 2003, Wiley India Pvt. Ltd.
- Nanotechnology: Principles and Practices, S. K. Kulkarni, 2nd edition, 2011, Capital Publishing Company
- 3) Introduction to Nanoscience and Technology, K. K. Chattopadhyay and A. N. Banerjee, 2009, PHI Learning Private Limited
- 4) Introduction to Nanoelectronics, V. V. Mitin, V. A. Kochelap and M. A. Stroscio, 2011, Cambridge University Press
- 5) Nanotechnology for Dummies, R. Booker and E. Boysen, 2005, Wiley Publishing Inc.
- 6) Introductory Nanoscience, M. Kuno, 2012, Garland science Taylor and Francis Group
- 7) Electronic transport in mesoscopic systems, S. Datta, 1997, Cambridge University Press.
- 8) Fundamentals of molecular spectroscopy, C. N. Banwell and E. M. McCash, 4th edition, McGrawHill

(4 Hours)

(5 Hours)

(10 Hours)

Additional Readings:

- 1) Quantum Transport in semiconductor nanostructures, C. Beenakker and H. Van Houten, 1991, available at arXiv: cond-mat/0412664) Open Source
- 2) Ph.D. thesis, S. Cronewett, 2001, Available as Arxiv
- 3) Solid State Physics, J. R. Hall and H. E. Hall, 2nd edition, 2014, Wiley

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be performed from the following list

- 1) Synthesis of metal (e.g. Au/Ag) nanoparticles by chemical route and study its optical absorption properties.
- 2) Synthesis of semiconductor (CdS/ZnO/TiO₂/Fe₂O₃ etc) nanoparticles and study its XRD and optical absorption properties as a function of ageing time.
- 3) Surface Plasmon study of metal nanoparticles as a function of size by UV-Visible spectrophotometer.
- 4) Analysis of XRD pattern of given nanomaterial and estimate lattice parameters and particle size.
- 5) To study the effect of the size nanoparticles on its color.
- 6) To prepare composite of CNTs with other materials and study their optical absorption/Transmission properties.
- 7) Growth of metallic thin films using thermal evaporation technique.
- 8) Prepare a ceramic disc of a given compound and study its XRD/I-V characteristics/ measure its dielectric constant or any other property.
- 9) Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study its XRD and transmittance spectra in UV-Visible region.
- 10) Prepare thin film capacitor and measure capacitance as a function of temperature or frequency.
- 11) Fabricate a pn junction diode by diffusing Al over the surface of N-type Si/Ge and study its V-I characteristic.
- 12) Fabricate thin films (polymer, metal oxide) using electro-deposition
- 13) To study variation of resistivity or sheet resistance with temperature of the fabricated thin films using four probe method.

References for laboratory work:

- Introduction to Nanotechnology, C. P. Poole and Jr. Frank J. Owens, 1st edition, 2003, Wiley India Pvt. Ltd.
- Nanotechnology: Principles and Practices, S. K. Kulkarni, 2nd edition, 2011, Capital Publishing Company
- Introduction to Nanoscience and Technology, K. K. Chattopadhyay and A. N. Banerjee, 2009, PHI Learning Private Limited
- 4) Nanotechnology for Dummies, R. Booker and E. Boysen, 2005, Wiley Publishing Inc.

GENERIC ELECTIVE (GE - 18): PHYSICS OF DETECTORS

Course Title &	Credits	Cre	edit distril of the cou	oution rse	Eligibility	Pre-requisite	
Code		Lecture	Tutorial	Practical	Criteria	of the course	
Physics of Detectors	4	3	1	0	Class XII Pass with	GE Modern Physics of this	
GE – 18					Science	equivalent	

LEARNING OBJECTIVES

A detector is necessary for every physical measurement, and experimental physicists must be proficient in detector physics. The course will provide an overview of radiation and particle detectors, as well as how to use them in various experimental physics settings and application fields. The course covers the theory of detectors, their design and operation including electronic readout systems and signal processing. The fundamental physics processes for detecting radiation and particles are covered in the course, which include the photoelectric effect, Compton scattering, pair creation, excitation, ionization, bremsstrahlung, Cherenkov radiation, nuclear reactions, and secondary emissions.

LEARNING OUTCOMES

After completion of this course, students are expected to be able to,

- Understand the different types underlying fundamental physical processes for the detection of radiation and particles
- Acquire knowledge of design principles and characteristics of different types of detector
- Acquire knowledge of electronic readout systems and signal processing
- Assess the applicability of different types of detectors and detector systems in various fields of physics and applied sciences.

SYLLABUS OF GE - 18

THEORY COMPONENT

Unit – I

Interaction of Radiation with matter: Interaction of radiation with matter (e.m. charged particles); detection of charged particles in magnetic field and measurement of charge to mass ratio; energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation; gamma ray interaction through matter (photoelectric effect, Compton scattering, pair production); Dependence of electron and photon energy spectrum on materials (increasing Z); neutron interaction with matter

Unit – II

Introduction to detectors: Basic principle of detector operation and its modes of operation, pulse height spectra, various detector performance parameters: response time, energy resolution, fano factor, efficiency: intrinsic and extrinsic, dead time.

(12 Hours)

(8 Hours)

(16 Hours)

Unit – III

Detectors:

Gas detectors: Detector gases, gas detector characteristics, different types of detectors: gas filled ionization detectors (ionization chamber), bubble and cloud chambers, proportional counters, multi wire proportional counters (MWPC), Geiger Mueller (GM) counters and avalanche counters, gaseous multiplication detector.

Scintillation detectors: General characteristics, organic scintillators (anthracene and plastic), inorganic crystals (NaI(Tl), CsI(Tl)), Charge Coupled Devices (CCD)

Photomultipliers: Basic construction and operation, time response and resolution, noise, gain stability; scintillation counter operation

Semiconductor detectors: Doped semiconductors, np semiconductor junction, depletion depth, detector characteristics of semiconductors. silicon and germanium detectors

Neutron detectors (gas-filled, scintillation, and semiconducting): slow and fast neutron detectors

Bolometric detectors: Working principle, characteristics and use of infrared detectors

Unit - IV

(5 Hours)

Electronics, signal processing and techniques for data acquisition and analysis: Basic idea of analog and digital signal processing, noise and its types; instrumentation standards for nuclear instruments: NIM, ECL; TTL standards

Data acquisition system: VME and Digital pulse processing system.

Unit - V

(4 Hours)

Application of detectors: for particle physics experiments, for nuclear physics, for astrophysics and cosmology, medical physics and imaging, by giving two examples each.

References:

Essential Readings:

- 1) Radiation detection and measurement, G. F. Knoll, 2010, John Wiley and Sons
- Principles of radiation interaction in matter and detection, C. Leroy and P. G. Rancoita, 3rd edition, 2011, World Scientific
- 3) Techniques for Nuclear and Particle Physics experiments, W. R. Leo, 1994, Springer
- 4) Nuclear Radiation Detectors, S. S. Kapoor and V. S. Ramamurthy, 1st edition, John Wiley and Sons.
- 5) Physics and Engineering of Radiation Detection, S. N. Ahmed, 2007, Academic Press Elsevier
- 6) Semiconductor detectors: New developments, E. Gatti and P. Rehak, 2002, Springer

Additional Readings:

- 1) Radiation Detection for Nuclear Physics Methods and industrial applications, D. Jenkins
- 2) Advanced Nuclear Radiation Detectors Materials, processing, properties and applications, A. K. Batra, IOP Publishing
- 3) Measurement and Detection of Radiation, N. Tsoulfanidis et al., 4th edition, T and F CRC
- 4) Principles of nuclear radiation detection, G. G. Eichholz and J. W. Poston, CRC
- 5) Introduction to Nuclear Radiation Detectors: 2, Laboratory Instrumentation and Techniques, P. Ouseph, Springer
- 6) Detectors for Particle Radiation, K. Kleinknecht, Cambridge
- 7) Particle Detectors, C. Grupen, Cambridge
- 8) Handbook of Particle Detection and Imaging, C. Grupen and I. Buvat

GENERIC ELECTIVE (GE - 19): NUCLEAR AND PARTICLE PHYSICS

Course Title &	Credits	Cre	dit distrik of the cou	oution rse	Eligibility Criteria	Pre- requisite of the course	Department offering the course
Code		Lecture	Tutorial	Practical			
Nuclear and Particle Physics	4	3	1	0	Class XII Pass with Science	NIL	Physics and Astrophysics
GE – 19					Selence		

LEARNING OBJECTIVES

This course imparts the understanding of the sub atomic particles and their properties; introduces various nuclear phenomena and their applications, interactions of basic building blocks of matter through fundamental forces, the inherent discrete symmetries of particles and complements each and every topic with applications and problems.

LEARNING OUTCOMES

After completion of this course, students are expected to have an understanding of,

- Nuclear charge and mass density, size, magnetic and electric moments
- Theoretical principles and experimental evidences towards modelling the nucleus
- Kinematics of nuclear reactions and decays
- Energy loss of radiation during propagation in medium
- Principles of nuclear detection technique
- Classification of fundamental forces based on their range, time-scale and mediator mass.
- Scattering cross-sections of 2 to 2 processes and their inherent symmetries.
- Angular and energy distributions for three body decay process.
- Discrete symmetries of nature and associated conservation laws
- Colour triplet quarks and anti-quarks as constituents of observed colour singlet baryons and mesons.

SYLLABUS OF GE 19

THEORY COMPONENT

Unit – I

General properties of nuclei: Constituents of nucleus and their Intrinsic properties: quantitative facts about mass, radii, charge density, matter density, binding energy, N/Z plot, angular momentum, parity, magnetic moment, electric moments.

Unit – II

Nuclear models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, evidence for nuclear shell structure and the basic assumptions of shell model, magic numbers.

Unit – III

(5 Hours)

(5 Hours)

(7 Hours)

Radioactivity decay: Decay rate and equilibrium (secular and transient)

(a) Alpha decay: basics of α -decay processes, Gamow factor, Geiger Nuttall law, α -decay spectroscopy, decay Chains.

(b) β -decay: energy kinematics for β -decay, β -spectrum, positron emission, electron capture, neutrino hypothesis.

(c) Gamma decay: Gamma ray emission from the excited state of the nucleus and kinematics, internal conversion.

Unit – IV

(5 Hours) Nuclear reactions: Kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, Coulomb scattering (Rutherford scattering).

Unit – V

Interaction of nuclear radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation; Gamma ray interaction through matter Detector for nuclear radiations: Basics of types of detectors: gas detectors, scintillation detector, semiconductor detector (principle, schematics of construction and working)

Unit – VI

Particle Physics: Overview of particle spectrum and their interactions in the Standard Model; range, time-scale and relative strength of interactions; interactions at a distance mediated by virtual particles (Exchange Force)

Kinematics for 2 -> 2 scattering processes and crossing symmetries of scattering amplitudes; angular and energy distributions of decaying particles in $1 \rightarrow 3$ decay processes (muon decay/beta decay); identification of invisibles (neutrinos) from energy and transverse momentum distributions

Lepton and Baryon quantum numbers; isospin, strangeness and hypercharge; Gell-Mann-Nishijima formula; parity and charge conjugation of a particle state; time reversal and general CPT theorem

Valence quark model of Murray Gell-Mann and Yuval Ne'eman, current and constituent masses of quarks, flavor symmetry isospin triplets, baryon octet, decuplet and meson octet; existence of Δ^{++} baryon as a clue for necessity of colour quantum number; evidence for colour triplet quarks from e^+e^- annihilation experiment; confinement of quarks, antiquarks and gluons in hadrons

High energy scattering experiments at linear and circular colliders, inelastic collisions at hadron colliders; elastic and inelastic neutrino-nucleus scattering experiments

References:

Essential Readings:

(A) For Nuclear Physics

- 1) Basic ideas and concepts in nuclear physics: An introductory approach, K. Heyde, 3rd edition, 1999, IOP Publication
- 2) Introductory Nuclear Physics, K. S. Krane, 2008, Wiley-India Publication
- 3) Nuclear Physics, S. N. Ghoshal, 1st edition, 2010, S. Chand Publication
- 4) Nuclear Physics: Principles and applications, J. Lilley, 2006, Wiley Publication
- 5) Concepts of Nuclear Physics, B. L. Cohen, 1974, Tata McGraw Hill Publication
- 6) Radiation detection and measurement, G. F. Knoll, 2010, John Wiley and Sons

(B) For Particle Physics

1) Modern Particle Physics, M. Thompson, 2013, Cambridge University Press

(8 Hours)

(15 Hours)

- 2) Particles and Nuclei: An Introduction to the Physical Concepts, B. Povh, K. Rith, C. Scholz, F. Zetsche and W. Rodejohann, 2015, Springer-Verlag
- 3) An Introductory Course of Particle Physics, P. B. Pal, 2015, CRC Press
- Introduction to High Energy Physics, D. H. Perkins, 4th edition, 2000, Cambridge University Press
- 5) Introduction to elementary particles, D. J. Griffiths, 2008, Wiley
- 6) Quarks and Leptons, F. Halzen and A. D. Martin, 1984, John Wiley

Additional Readings:

References for Tutorial

- 1) Problems and Solutions in Nuclear and Particle Physics, S. Petreta, 2019, Springer
- 2) Schaum's Outline of Modern Physics, 1999, McGraw-Hill
- 3) Schaum's Outline of College Physics, E. Hecht, 11th edition, 2009, McGraw Hill
- 4) Problems and Solutions on Atomic, Nuclear and Particle Physics, Yung-Kuo Lim, 2000, World Scientific
- 5) Nuclear Physics "Problem-based Approach" including MATLAB, H. M. Aggarwal, 2016, PHI Learning Pvt. Ltd

GENERIC ELECTIVE (GE - 20): ATOMIC AND MOLECULAR PHYSICS

Course Title &	Credits	Cre	edit distrik of the cou	oution rse	Eligibility Criteria	Pre-requisite of the course	
Code		Lecture	Tutorial	Practical			
Atomic and Molecular Physics	4	3	1	0	Class XII Pass with	GE Modern Physics and GE Quantum Mechanics of this course or their	
GE – 20					Science	equivalent	

LEARNING OBJECTIVES

This course introduces the basic concepts of atomic, molecular and nuclear physics to an undergraduate student. Advanced mathematics is avoided and the results of quantum mechanics are attempts to explain, or even to predict, the experimental observations of spectroscopy. The student will be able to visualize an atom or molecule as a physical entity rather than a series of mathematical equations.

LEARNING OUTCOMES

On successful completion of the module students should be able to elucidate the following main features.

- Stern-Gerlach experiment, electron spin, spin magnetic moments
- Space quantization and Zeeman effect
- Spectral notations for atomic and molecular states and corresponding term symbols
- Understanding of atomic spectra and molecular spectra
- Basic principle of Raman spectroscopy and Franck Condon principle
- To complete scientific potential lies on the way we are able to interpret the fundamental astrophysical and nuclear data. This acquired knowledge will be a common base for the areas of astrophysics, nuclear, medical, geology and other inter-disciplinary fields of Physics, Chemistry and Biology. Special skills required for the different fields will be enhanced.

SYLLABUS OF GE 20

THEORY COMPONENT

Unit – I – Atomic Physics

One-electron atoms: Degeneracy of energy levels and selection rules, modes of relaxation of an excited atomic state, line intensities and the lifetimes of excited states, line shapes and widths

Fine structure of hydrogenic atoms: Shifting of energy levels, splitting of spectral lines, relativistic correction to kinetic energy, spin-orbit term, Darwin term, fine structure spectral lines, Lamb shift (qualitative idea)

Atoms in external magnetic fields: Larmor's theorem, Stern-Gerlach experiment, normal Zeeman effect, Paschen Back effect, and anomalous Zeeman effect, g-factors

Two and multi-electron systems: Spin multiplicity, singlet and triplet states and selection rules in helium atom, central field approximation, Aufbau and Pauli exclusion principle,

(23 Hours)

Slater determinant, LS and JJ coupling scheme (equivalent and non-equivalent electrons), term symbols and Hund's rule, Lande' interval rule

Qualitative Discussion of: Lamb shift and Auger effect.

Unit – II - Molecular Physics

(22 Hours)

Electronic states of diatomic molecules: Linear combination of atomic orbitals (LCAO), bonding and antibonding orbitals; 'gerade', 'ungerade', molecular orbitals and the ground state electronic configurations for homo and hetero-nuclear diatomic molecules, classification of molecular excited states of diatomic molecule, Vector representation of Orbital and electron spin angular momenta in a diatomic molecule, The Born-Oppenheimer approximation, Concept of Potential energy curve for a diatomic molecule, Morse potential. The Franck-Condon principle

Molecular Spectra of diatomic molecule: Rotational Spectra (rigid and non-rigid rotor), Vibrational Spectra (harmonic and anharmonic), Vibration-Rotation Spectrum of a diatomic molecule, Isotope effect, Intensity of spectral lines

Raman Effect: Classical Theory (with derivation) of Raman effect, pure rotational Raman Lines, Stoke's and Anti-Stoke's Lines, comparison with Rayleigh scattering

Idea of spin resonance spectroscopy (Nuclear Magnetic Resonance, Electron Spin Resonance) with few examples, estimation of magnetic field of the Sun.

References:

Essential Readings:

- 1) Physics of Atoms and Molecules, B. H. Bransden and C. J. Jochain, 2nd edition, Pearson
- 2) Fundamentals of Molecular Spectroscopy, C. N. Banwell and E. M. McCash, 1994, Tata McGraw Hill
- 3) Atomic physics, J. B. Rajam and foreword by Louis De Broglie, 2010, S. Chand and Co.
- 4) Atoms, Molecules and Photons, W. Demtroder, 2nd edition, 2010, Springer
- 5) Atomic, Nuclear and. Particle Physics. Compiled by. The Physics Coaching Class. University of science and Technology of China, edited By Yung-Kuo Lim. World scientific.
- 6) Atomic Physics, S. N. Ghoshal, 2019, S. Chand Publication
- Introduction to Spectroscopy, D. L. Pavia, G. M. Lampman, G. A. Kriz and J. R. Vyvyan, 5th edition, 2014, Brookes/Cole

Additional Readings:

- 1) Basic Atomic and Molecular Spectroscopy, J. M. Hollas, Royal Society of Chemistry
- 2) Molecular Spectra and Molecular Structure, G. Herzberg
- 3) Introduction to elementary particles, D. J Griffiths, 2008, Wiley
- 4) Atomic and molecular Physics, R. Kumar, 2013, Campus Book Int.
- 5) The Fundamentals of Atomic and Molecular Physics, Undergraduate Lecture Notes in Physics, 2013, Springer