

UNIVERSITY OF DELHI

DEPARTMENT OF BOTANY

Bachelor of Science in Botany & Life Sciences
OR

Bachelor of Botany (Honours with Research/Academic Project/Entrepreneurship)
OR

Bachelor of Botany (Honours with Research in Major in Botany)
OR

Bachelor of Science (Hons.) in Botany with Dissertation/ Academic Projects/
Entrepreneurship

Under UGCF-2022 based on NEP-2020

(Effective from Academic Year 2022-23)

Courses offered in B.Sc (Honours) BOTANY Semester VII and VIII with the course contents

Department of Botany

SEMESTER –VII
(Under UGCF-2022 based on NEP-2020)

S. No.	Contents	Page Numbers
1	B. Sc (Honours) BOTANY- (DSCs) DSC-19: Genomics, Proteomics and Bioinformatics	3
2	Pool of Discipline Specific Electives (DSEs) BOT-DSE-08: Research methodology [#] BOT-DSE-09-Biodiversity Informatics ¹ BOT-DSE-10-Plant Tissue Culture BOT-DSE-11-Reproductive Ecology ² BOT-DSE-12-Environmental Biotechnology & Management	6
4.	*Pool of Generic Elective Courses (GEs) BOT-GE-09: Intelligent Systems in Plants BOT-GE-10: Informatics and Statistics for Biology and Allied Sciences BOT-GE-13: Plant Biotechnology BOT-GE-18: Genetic Engineering technologies and Applications BOT-GE-20: Genomics, Proteomics and Metabolomics	NA
5	Dissertation on Major/Minor/Academic Project	As per University guidelines

^{1,2} Courses are already offered as Generic Elective

* The syllabi of the mentioned GE courses have already been approved.

Research Methodology shall be offered in Semester VI and VII as per the guidelines of University of Delhi. Students planning to pursue a 4 year UG program are advised to choose research methodology in the VI semester.

DISCIPLINE SPECIFIC CORE COURSE (DSC-19): Genomics, Proteomics and Bioinformatics

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Genomics, Proteomics and Bioinformatics DSC-19	4	2	0	2	Semester VI	Nil

Learning Objectives:

- Introduce students to fundamental and emerging concepts in genomics, proteomics, and bioinformatics.
- Familiarize students with analytical tools and real-world applications of omics technologies across agriculture, health, and environmental sectors.
- Explore interdisciplinary fields such as metagenomics, epigenomics, and single-cell genomics and their significance in global problem-solving.
- Develop basic computational skills to utilize bioinformatics databases and tools for data interpretation in genomics and proteomics.

Learning Outcomes:

By the end of the course, students will be able to:

- Explain the principles and applications of genomics in agriculture, human health, and environmental science.
- Understand the concepts of epigenetics and demonstrate familiarity with tools used to study epigenetic modifications.
- Describe metagenomics and single-cell genomics, and their relevance in microbiome analysis and environmental monitoring.
- Understand core techniques and tools in proteomics, including post-MS data analysis, and their translational value.
- Demonstrate knowledge of bioinformatics concepts, databases, and software tools for sequence, structure, and functional analysis of biological data.

Theory:	30 hours
Unit 1: Genomics and Epigenetics	10 hours
Genomic concepts: genomes, genes, and non-coding regions, Structure of complexity of eukaryotic genome, Applications in agriculture, health, and the environment, CRISPR-Cas9: A beginner-friendly introduction to genome editing, Genomics ethics: privacy, data sharing, and equity. Epigenomics. DNA methylation and histone modifications, Overview of Bisulfite sequencing and ChIP-Seq, Role of epigenetics in stress adaptation in plants.	
Unit 2: Metagenomics and Single-Cell Genomics	5 hours
Metagenomics: concept and applications, Human Microbiome Project (HMP), Environmental metagenomics: Role in pollution control and ecosystem management. Single-cell genomics: its concept and importance.	
Unit 3: Proteomics	7 hours
Overview of Proteomics, Complexity of protein structure (primary, secondary and tertiary), Post translational modifications (phosphorylation, glycosylation), Proteome analysis by 2-D gel electrophoresis, Edman sequencing (Methodology and limitations in protein sequencing) and MALDI-ToF (Matrix-Assisted Laser Desorption/Ionization – Time of Flight), nLC-MS/MS (nano-Liquid Chromatography coupled with Tandem Mass Spectrometry), X-ray crystallography.	
Unit 4. Bioinformatics	8 hours
Introduction to bioinformatics: definition and scope, Nucleotide and Protein databases (GenBank, UniProt, PDB), metabolic pathway database (KEGG), Search engines for databases (Entrez and PubMed), File format (FASTA), BLAST, Concept of sequence alignment, molecular phylogeny	
PRACTICALS:	60 hours
1. Virtual Exploration of Plant Genomes	
1a. Access a plant-specific genome database (e.g., <i>Oryza sativa</i> in Gramene or <i>Arabidopsis thaliana</i> in TAIR).	
1b. Search for a gene of interest (e.g., drought resistance or photosynthesis-related genes).	
1c. Record details such as gene location, sequence, function, and related pathways.	
1d. Compare homologous genes between two plant species using BLAST.	
2. Study of GenBank and UniProt for the retrieval of nucleic acid and amino acid sequences	
3. Sequence homology and gene annotation through BLAST tool	
4. Illumina sequencing through photograph	

5. Explore single nucleotide polymorphisms (SNPs) in plants and their role in trait variation.
6. Predict the structure of protein from its amino acid sequence. (Phyre 2/ Modweb/ CPH model/ Swiss Model).
7. Analysis of protein (s) on 2-D Gels, X-ray crystallography and protein microarray through photographs.
8. *In silico* analysis for PTM, Localization, and functions using the above-mentioned software.
9. Basic handling of data, transcriptome assembly, batch blast, batch primer design, setting up a local blast, basic of genome assembly, and isolation of microsatellites using MISA.

Suggested Readings (Books and Articles):

- Brown, T.A. (2017). *Genomes 4*. Garland Science. *A student-friendly introduction to genomics with clear explanations and examples.*
- Dale, J.W., & Park, S.F. (2010). *Molecular Genetics of Bacteria*. Wiley-Blackwell. *Covers foundational concepts in bacterial genomics and applications.*
- Allis, C.D., Caparros, M.-L., Jenuwein, T., & Reinberg, D. (2015). *Epigenetics*. Cold Spring Harbor Laboratory Press. *(Focus on the introductory sections for basics of DNA methylation and histone modifications.)*
- Pevsner, J. (2015). *Bioinformatics and Functional Genomics*. Wiley-Blackwell. *(Chapters on metagenomics provide a straightforward introduction with practical applications.)*
- Handelsman, J. (2004). *Metagenomics: Application in Microbial Ecology*. ASM Press. *(Focuses on simple and engaging content about microbial diversity studies.)*
- Doudna, J.A., & Sternberg, S.H. (2017). *A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution*. Houghton Mifflin Harcourt. *(Written for a general audience, this book explains CRISPR in simple terms.)*
- Regev, A. et al. (2017). "The Human Cell Atlas." *eLife*. *(Overview of single-cell genomics and its goals in mapping human cells.)*
- Varshney, R.K., Roorkiwal, M., & Sorrells, M.E. (2017). *Genomic Selection for Crop Improvement*. Springer. *(Readable sections on GWAS and genomic applications in crop breeding.)*
- Sandel, M.J. (2009). *The Case Against Perfection: Ethics in the Age of Genetic Engineering*. Harvard University Press. *(Simplifies the ethical dilemmas posed by genomics and genome editing.)*

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-08): revised RESEARCH METHODOLOGY to be followed from 2025-26 academic year

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
RESEARCH METHODOLOGY DSE-08	4	2	0	2	Semester V	Nil

Learning Objectives:

- To introduce fundamental principles of research, including types, designs, and approaches used in biological sciences.
- To provide hands-on experience in data collection, analysis, interpretation, and scientific communication.
- To develop critical skills for framing research questions, hypotheses, and experimental designs.
- To equip students with tools for conducting literature reviews using digital and print resources.
- To train students in scientific writing, referencing, plagiarism checking, and intellectual property rights.
- To encourage ethical practices and promote problem-solving through scientific investigation aimed at societal benefit.

Learning Outcomes:

After successful completion of the course, students will be able to:

- Describe the key concepts, types, and methodologies of research in biological sciences.
- Formulate research questions and hypotheses, and design appropriate experimental or survey-based studies.
- Conduct comprehensive literature reviews, identify research gaps, and synthesize existing knowledge.
- Collect, analyze, and interpret qualitative and quantitative data using appropriate statistical or software tools.
- Write scientific reports, proposals, reviews, and thesis documents using correct referencing and citation styles.
- Demonstrate ethical research conduct, understand plagiarism, and appreciate the basics of intellectual property rights.

Theory:	30 hours
Unit 1: Basic Concepts of Research	4 hours
Objectives, Research Methods vs Methodology, Types of Research-Quantitative vs Qualitative, Analytical vs Descriptive, Basic vs Applied, Field Research, Search engines, Literature-review and its consolidation	
Unit 2: Research Design, Data Collection and Analysis	12 hours
Conceptualization a research problem, Developing a research model, Validation of the proposed model with standard procedures and attributes, Experimental design, and implementation, Observation and Data acquisition, Methods of data collection, Data quality check, Processing and Analysis Strategies; Data presentation (Tables and Figures), Interpretation	
Unit 3: Ethical Issues	04 hours
Intellectual Property Rights, Copy Right, Plagiarism, Commercialization and Royalty	
Unit 4: Report Writing	10 hours
Technical Research writing (Dissertation/ Reports/Research/Review papers), Citations, Acknowledgements, Research Grants/ Fellowships, Bibliography	

PRACTICALS: **60 hours**

1. Search engines, Literature survey, identification of gap areas
2. Presentation of collated literature
3. Experimental layout, execution, observation
4. Data analysis, using softwares, tables and figures
5. Writing a report/research paper/dissertation/summary
6. Preparation of bibliography in different formats as per journal's requirements
7. Usage of software tools for checking plagiarism

Suggested Readings:

1. Coley, S.M. and Scheinberg, C.A. (1990). "Proposal writing". Stage Publications.
2. Stapleton, P., Yondeowei, A., Mukanyange, J., Houten, H. (1995). Scientific writing for agricultural research scientists – a training reference manual. West Africa Rice Development Association, Hong Kong.
3. Wadhera, B.L. (2002). Law Relating to Patents, Trade Marks, Copyright Designs and Geographical Indications, Universal Law publishing.
4. Dawson, C. (2002). Practical research methods. UBS Publishers, New Delhi.
5. Anthony, M, Graziano, A.M. and Raulin, M.L. (2009). Research Methods: A Process of Inquiry, Allyn and Bacon.
6. Kothari, C.R. (2014). Research Methodology: Methods and Techniques, 2nd edition, New Age International (P) Ltd.,

7. Walliman, N. (2011). *Research Methods- The Basics*. Taylor and Francis, London, New York, USA.
8. Cresswell, J.W. (2014). *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches* (4th edition). SAGE Publications Inc.
9. Rao, G.N. (2018). *Biostatistics & Research Methodology*. Pharmamed Press.
10. Gary J. Burkholder, G.J., Cox, K.A., Crawford, L.M. Hitchcock, J.H. (2019). *Research Design and Methods: An Applied Guide for the Scholar-Practitioner*. SAGE Publications, Inc.
11. Mukherjee, S.P. (2019). *A Guide to Research Methodology: An Overview of Research Problems, Tasks and Methods*. CRC Press
12. Flick, U. (2020). *Introducing Research Methodology: Thinking Your Way Through Your Research Project*. SAGE Publications Ltd.

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE- 09): Biodiversity Informatics

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Biodiversity Informatics DSE-09	4	2	0	2	Semester VI	Nil

Learning Objectives:

To introduce students to an integrated area of study where concepts learnt under different courses in previous semesters are to be utilised. The field of Biodiversity informatics integrates information on systematics, ecosystems to curate, analyse and develop an information management system to provide sound scientific bases for policy decisions.

Learning Outcomes:

- Assess knowledge on basic principles of Ecology, Conservation, Restoration, Biodiversity, Genetics, Molecular biology.
- Introduce applications of Remote Sensing and Geographical Information System as well as Informatics.
- Provide an opportunity to learn principles of Data Capture systems, basic elements of digitisation of Biological data, some key elements of Information Science along with creation/curation of Biological Databases (collection, storage & retrieval)
- Emphasise the importance of field collection, maintenance of herbaria & specimen collections.
- Introduce relevant National and International Biodiversity Laws.

Theory : **30 hours**

Unit 1. Understanding Biodiversity and Informatics **05 hours**

Introduction to Global & National movements for conservation, institutions (including National Biodiversity Authority of India, NBPGR and others) and other non-Governmental organisations (NGO's) and networks involved in biodiversity informatics. Ecapitulating Basic principles of Ecology & Biodiversity - Geological Time scale and evolution of life forms, Five major

extinctions, Ecosystems & Ecosystems diversity: biomes, mangroves, coral reefs, wetlands and terrestrial diversity. Biodiversity Hotspots & factors of endemism. Levels of Biodiversity: Community diversity (alpha, beta and gamma biodiversity), Gradients of Biodiversity (latitudinal, insular).

Unit 2. Measuring/Estimating Biodiversity 08 Hours

- i. Magnitude of biodiversity (Global and Indian data). Introduction to Diversity Indices (Simpson, Shannon) and estimation of Species diversity: richness and evenness, loss of species.
- ii. Introduction to Metagenomics, use of ancient DNA (aDNA) for estimation of biodiversity loss.
- iii. Estimating Threats to natural Biodiversity: Habitat loss and fragmentation Disturbance and pollution; Introduction of exotic species; Human intervention and Biodiversity loss; Consequences of monotypic agricultural practice
- iv. Global Environmental changes, land and water use changes ; Impacts of Climate Change on Biological systems.

Unit 3. Informatics Resources and Methods 11 hours

- i.National & International efforts in Conservation, databases GBIF, IUCN categorized-endangered, threatened, vulnerable species.
- ii.Red data book and related documentation.
- iii.Categories of Biodiversity informatics databases and tools based on target life cycle step : data planning and collection, data quality and fitness, data description, data preservation and publication, data discovery and integration, computational modeling and analysis.(few databases example can be chosen to explain the steps - BRAHMS, Genbank, Catalog of Life, DataOne, GBIF, BioCollections)
- iv.Remote Sensing/Geographical Information Systems and its applications.
- v.Data capture – citizen science, uploading information on portals (e.g. www.indiabiodiversityportal.org).
- vi.Key parameters for conservation (populations reproductive ecology)
- vii.Essential management practices in in-situ and ex-situ Biodiversity Management :
 - a. Management of - Biosphere reserves, National Parks, Sanctuaries, Sacred groves etc.
 - b. Management of Botanical gardens, Zoological gardens, Gene banks, Pollen, seed and seedling banks, tissue culture and DNA banks etc.

Unit 4. Applications of Biodiversity Informatics 06 Hours

- i. Modeling Ecosystems & Predictions, conservation plans for species/taxa/ecosystem.

- ii. Definitions and concepts of system, sub-system, variables and parameters, systems analysis, modeling and simulation (Lotka-Voltera model).
- iii. Legal issues in Biodiversity Management & Conservation; Rules for exchange of genetic materials; Case studies -National & International. (This is important for IPR perspective, gives the student and faculty options for assignments/ assessments, case studies
- iv. Legal issues in Biodiversity Management & Conservation; Rules for exchange of genetic materials; Case studies -National & International.
- v. Designing & implementing ecological restorations.

PRACTICALS: **60 hours**

- 1. Measurement of species diversity (calculation of Diversity Indices - from data collected on plant species in different areas of the campus.
- 2. Use of molecular markers for estimating biodiversity (DNA Barcoding).
(Simple case studies and wherever possible experiments can be performed to teach the concept).
- 3. Blast analyses of selected DNA sequences from the International Gene Banks.
- 4. Introduction to simulations based on various environmental models.
- 5. Applications of RS/GIS techniques for species distribution models.
- 6. Experiential Learning Module: Visit to Biodiversity Parks, study the management and species diversity, based on that prepare a proposal for enhancement/ creation of local Biodiversity Park/Community outreach activities and other attributes.

Suggested Readings:

- Groom MJ, Meffe GK, Carroll CR (2006) Principles of Conservation Biology, 3rd edition, Sinauer Associates.
- Tandon U, Parasaran M, Luthra S (2018) Biodiversity : Law, Policy and Governance, Routledge, India
- Wilson, Edward O., 1993, Diversity of Life. Harvard University Press, Cambridge, MA.
- Wheater CP, Bell JR, Cook PA (2011) Practical field Ecology: A Project guide, Wiley-Blackwell
- IUCN RED DATA BOOK - <https://portals.iucn.org/library/node/16746>
- <http://biodiversity-informatics-training.org/bi-curriculum/>
- <https://www.tdwg.org/standards/>
- https://methodsblog.com/2015/05/26/beta_diversity/

Additional Resources:

- Saha, G.K. and Mazumdar, S. (2017). Wildlife Biology: An Indian Perspective. PHI learning Pvt. Ltd. ISBN: 8120353137, 978-812035313
- Sinclair, A.R.E., Fryxell, J.M. and Caughley, G. (2006). Wildlife Ecology, Conservation and Management. Wiley-Blackwell, Oxford, UK.
- Singh, S.K. (2005). Text Book of Wildlife Management. IBDC, Lucknow.
- Banerjee, K. (2002). Biodiversity Conservation in Managed and Protected Areas. Agrobios, India.
- Sharma, B.D. (1999). Indian Wildlife Resources Ecology and Development. Daya Publishing House, Delhi.
- www.indiabiodiversityportal.org
- www.johnkyrk.com/evolution.swf
- Magurran, A.E. 2013. Measuring Biological Diversity, John Wiley.
- Primack, R.B. (1998). Essentials of Conservation Biology. Sinauer Associates, Inc. Sunderland, MA.
- Rachel Carson (1962) A Silent Spring, Houghton Mifflin Company .

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC ELECTIVE COURSE - 10: Plant Tissue Culture

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Plant Tissue Culture DSE-10	4	2	0	2	Class XII pass	Nil

Learning Objectives:

- To impart foundational knowledge of plant tissue culture techniques and their theoretical principles.
- To familiarize students with the historical development and key contributors in plant tissue culture.
- To provide hands-on understanding of media preparation, explant selection, and aseptic techniques.
- To expose learners to advanced applications such as micropropagation, protoplast fusion, and somatic embryogenesis.
- To develop entrepreneurial and research skills for applying tissue culture in agriculture, biotechnology, and industry.

Learning Outcomes:

After successful completion of the course, students will be able to:

- Explain the historical background and basic principles of plant tissue culture, and define key terminology.
- Identify various types of tissue culture media, their components, and their physiological relevance.
- Demonstrate knowledge of sterile techniques, explant preparation, and culture initiation.
- Apply tissue culture methods such as micropropagation, protoplast culture, anther culture, and embryo rescue in crop improvement.

- Evaluate advanced applications like artificial seeds, secondary metabolite production, cryopreservation, and germplasm conservation for commercial and biodiversity goals.

Theory: **30 hours**

Unit 1: Introduction **2 hours**

Historical perspective, Important contributions of Haberlandt, White, Reinert & Steward, Murashige, Skoog, Cocking, Guha & Maheshwari, Morrel & Martin.

Terminologies: Cell culture, organ culture, explant, callus, totipotency, plasticity, regeneration, soma clonal variation.

Unit 2: Techniques of Plant Tissue Culture **6 hours**

Types and composition of Media: Role of nutrients, vitamins, hormones, and supplements in nutrient medium. Composition of Murashige and Skoog's and White's medium. Impact of gelling agents and pH on the nutrient medium.

Collection of plant material, aseptic culture techniques: surface sterilization of tissues (maintenance of aseptic conditions by use of autoclave and laminar flow chamber), filter sterilization, inoculation.

Unit 3: Protoplast culture and Micropropagation **10 hours**

Protoplast isolation (mechanical and enzymatic), culture, purification (viability test) and fusion (spontaneous, induced), selection of fused protoplasts, applications of protoplast culture; Micropropagation: Selection of plant material and suitable explant, methodology, plant regeneration pathways-somatic embryogenesis, organogenesis, difference between somatic and zygotic embryos.

Unit 4: Applications of Plant Tissue Culture **12 hours**

Anther culture, Production of haploids, triploids and cybrids, artificial seeds (production & advantages), embryo rescue, virus elimination, bioreactors for secondary metabolite production; Cryopreservation; Germplasm conservation, Novel sources of variation.

Practicals: **60 hours**

1. To study the equipment used in tissue culture: autoclave and laminar air flow chamber.
2. Preparation of Murashige & Skoog's (MS) medium.
3. Demonstration of sterilization and inoculation methods using leaf and nodal explants of tobacco, carrot, *Datura*, *Brassica*, etc. (any two).
4. Study of anther, embryo and endosperm culture (demonstration/photographs).
5. Study of micropropagation, somatic embryogenesis & artificial seeds (demonstration/photographs).
6. Isolation of protoplasts (demonstration/photographs)

7. Visit to a plant tissue culture facility/ Industry and submission of report.

Suggested Readings:

- Bhojwani, S.S. (1990). Plant Tissue Culture: Applications and Limitations {Elsevier}
- Bhojwani, S.S, Bhatnagar, S.P. (2015). The Embryology of Angiosperms, 6th edition. New Delhi, Delhi: Vikas Publication House Pvt. Ltd.
- Bhojwani, S. S. and Dantu, P. K. (2013). Plant Tissue Culture: An Introductory Text Springer
- Bhojwani, S. S. and Razdan, M. K. (1996). Plant Tissue Culture: Theory and Practice, Revised Edition, Elsevier
- Newmann, Karl-Hermann (2020). Plant Cell and Tissue Culture: A Tool in Biotechnology, 2nd Edition Springer

Additional Resources:

- Park, Sunghun (2021). Plant Tissue Culture: Techniques and Experiments, 4th Edition Elsevier
- Razdan, M. K. (2019). Introduction to Plant Tissue Culture, 3rd Edition CBS / Oxford & IBH
- Smith, R. H. (2013). Plant Tissue Culture: Techniques and Experiments, 3rd Edition {Elsevier}
- Stewart, C. Neal (2016). Plant Biotechnology and Genetics, 2nd Edition Wiley-Blackwell
- Trigiano, R. N. (2011). Plant Tissue Culture, Development, and Biotechnology CRC Press

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-11): Reproductive Ecology

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Reproductive Ecology DSE-11	4	2	0	2	Class XII pass with Biology/ Biotechnology	Nil

Learning Objectives :

- To acquaint students about the diversity in floral architecture, floral rewards so that they can correlate the concepts with breeding mechanisms.
- To help them appreciate the adaptive significance of various traits associated with pollination, seed dispersal and seedling recruitment.
- To sensitize students towards challenges faced by flowering plants on account of climate change and other anthropogenic activities.
- To build on the concepts of inbreeding and outbreeding depression, seed ecology and resource allocation.

Learning Outcomes:

After completing this course students will:

- Become familiar with interesting concepts involved in understanding of reproductive ecology such as floral rewards, plant-pollinator interactions and pollinator guilds.
- Have an understanding of intricacies and complexities involved in the reproductive success.
- Will have background knowledge and an opportunity to utilize this knowledge to undertake interdisciplinary research in conservation biology and other allied fields such as plant breeding.

Theory:	30 hours
Unit 1: Floral Ecology	10 hours
Floral architecture (transitions between symmetrical and asymmetrical flowers,) role of pollination systems (any two examples), Phenology, Sexual systems, (monoecy, dioecy, hermaphroditism, gynomonoecious, andromonoecious etc.) cryptic sexuality- resource allocation and reproductive allocation, evolution from solitary flowering to inflorescence, floral attractants, and rewards (pollen, nectar, scent, colour)..	
Unit 2: Pollination Ecology	8 hours
Pollination syndromes, (transitions from generalized and specialized pollination system, including mutualistic and non-mutualistic interactions with two examples each), pollinator guilds (concept with two examples); ambophily, pollen banks, pollen mediated gene flow, mating systems, Factors affecting pollen-pistil interactions (abiotic, biotic, and anthropogenic);, inbreeding and outbreeding depression; resource allocation.	
Unit 3: Seed Ecology	4 hours
Dispersal mechanisms (primary and secondary with two examples), viability, dormancy, germination; seedling recruitment; natural seed banks and species survival, seed shadow, seed mediated gene flow .	
Unit 4: Reproductive Ecology- Challenges and Contemporary Issues 8 hours	
Impact of climate change on sexual reproduction, global pollinator crisis and pollination failure; crop yield reduction, habitat fragmentation and altitudinal shifts; impact of invasive species on native plants and pollinators, Effect of pollution on reproductive biology of plants	
PRACTICALS: 60 hours	
1. To study diversity in floral architecture (type of soil, temperature, humidity etc. to be mentioned).	
2. To carry out histochemical tests in pollen (proteins, lipids, starch).	
3. To study the structure of nectary of any flower available in the campus (through section, whole mount).	
4. To analyse nectar volume and composition (using refractometer/chromatography)	
5. To study through temporary preparations - types of stigma (dry and wet) and style (hollow and solid).	
6. To calculate pollen to ovule ratio and predict the mating system using established literature.	
7. Study of species survival (ovule to seed ratio).	
8. Effect of antibiotics on pollen germination.	

Essential Readings:

- Tandon, R., Shivanna, K.R., Koul, M. (Eds) 2020. Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer [LINK](#)
- Shivanna, K.R., Tandon, R. 2014. Reproductive Ecology of Flowering Plants: A Manual. Springer [LINK](#)
- Lovett-Doust, J., Lovett-Doust.L. 1988. Plant Reproductive Ecology: Patterns and Strategies: Oxford University Press, USA.
- Rustagi, A., Chaudhry, B. (Eds) 2022. Plant Reproductive Ecology-Recent Advances. Intech Open, London, U.K
- Mangla, Y., Khanduri, P., Gupta, C.K. 2022. Reproductive Biology of Angiosperms: Concepts and Laboratory Methods. Cambridge University Press.

Suggested Readings:

- Spencer C.H. Barrett & Christopher G. Eckert (1990) Current issues in plant reproductive ecology. Israel Journal of Botany 39:1-2, 5-12.
- Nicolson, S.W., Wright, G.A. 2017. Plant–pollinator interactions and threats to pollination: perspectives from the flower to the landscape. Functional ecology 31:22-25
- Hicks, L. 2020. Flowers colors are changing in response to climate change; Pigment changes can make plants less attractive to pollinators. Science News.

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-12): Environmental Biotechnology & Management

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Environmental Biotechnology & Management DSE-12	4	2	0	2	Class XII pass	Nil

Learning Objectives:

The course aims to build awareness of:

- various global and regional environmental concerns due to natural causes and/or human activities.
- different types of pollution and their impacts on the environment.
- existing and emerging technologies that are important in the area of environmental biotechnology to fulfill Sustainable Development Goals.

Learning Outcomes:

After completion of course the student will be able to:

- demonstrate awareness about emerging concerns such as climate change, waste management; biodegradation of xenobiotic compounds; bioremediation, etc.
- relate applications of biotechnology for alleviating the environmental concerns
- appreciate the scientific, ethical and/or social issues
- understand the national and international legislations, policies and role of public participation in Environmental Protection

Theory : **30 hours**

Unit 1: Environment **5 hours**

Basic concepts and issues, global environmental problems - ozone layer depletion, UV-B, greenhouse effect and acid rain due to anthropogenic activities, their impact and biotechnological approaches for management. Fate of pollutants in the environment, Bioconcentration, Biomagnification.

Unit 2: Microbiology of waste water treatment **7 hours**
Aerobic process - activated sludge, oxidation ponds, trickling filter. Anaerobic process - anaerobic digestion, anaerobic filters, up-flow anaerobic sludge blanket reactors. Treatment schemes for waste waters of dairy and sugar industries.

Unit 3: Content: Xenobiotic compounds and their Biotreatment **12 hours**

Organic (Bio degradation of petroleum products and pesticides) and inorganic (heavy metals, phosphates, nitrates). Bioremediation of xenobiotics in environment - ecological consideration, Bioaccumulation and Biosorption of heavy metals, Biopesticides, bioreactors, bioleaching, biomining, biosensors, Bioindicators and Bioprospecting

Unit 4: Legislations, Policies for Environmental Protection and Pollution Management **6 hours**

Stockholm Conference (1972) and its declaration, WCED (1983) and Montreal Protocol - 1987, Kyoto Protocol- 1997. Environmental ethics, Water Pollution (Prevention and Control) Act- 1974, Air Pollution (Prevention and Control) Act-1981, National Environmental Policy - 2006, Central and State Pollution Control Boards: Constitution and power.

PRACTICALS: **60 hours**

1. Study the working and uses of trickling filters and activated sludge in treating waste water through photographs.
2. Study of biomagnification and bioconcentration and its impact on environment through photographs.
3. Study of different xenobiotic compounds (including pesticides (DDT), PAHs, heavy metals (Cr (VI) and Hg), and their effects on Environment.
4. Study of airborne microbes using settle plate method from various sites (classroom, terrace and garden).
5. Prepare compost pits using fruit peels, leaves noting the changes as well as temperature over time for biodegradation.
6. Estimate Cr(VI) concentration in water sample (through diphenylcarbazide using spectrophotometric method).
7. Detect nutrient pollution that causes eutrophication by performing colorimetric estimation of nitrate (using salicylic acid method) and phosphate (molybdenum blue method)
8. A visit to any institute/ industry/ field site to understand the uses of microbes in environmental management and a report to be submitted for the same.

Suggested Readings:

1. De, A. K. (2022). Environmental Chemistry, 10th Edition, New Delhi. New Age International Pvt. Limited

2. Dennis, A., Seal, K.J., Gaylarde, C.C. (2004). Introduction to Biodeterioration, Cambridge University Press
3. Rahman, Z. Thomas, L., (2025) Industrial and Environmental Microbiology. ISBN: 9781032644769. CRC Press
4. Ahmed, N., Qureshi, F.M., Khan, O.Y. (2006). Industrial and Environmental Biotechnology, Horizon Press
5. Rochelle, P.A. (2001). Environmental Molecular Biology, Horizon Press.
6. Jadhav, H.V., Bhosale, V.M. (2015). Environmental Protection and Laws, Himalaya publishing House Pvt Ltd.
7. Trivedi, P. C. (2006). Biodiversity Assessment and Conservation, Agrobios Publ.
8. Rana, S.V.S. (2015). Environmental Biotechnology, Rastogi Publications, India.

Department of Botany

SEMESTER –VIII

(Under UGCF-2022 based on NEP-2020)

S. No.	Contents	Page Numbers
1	B. Sc. (Honours) BOTANY- (DSCs) DSC-20: Integrative Plant Biology	23
2	Pool of Discipline Specific Electives (DSEs) BOT-DSE-13: Plant Stress Biology BOT-DSE-14: Immunological Concepts and Applications in Plant Science BOT-DSE-15: Advances in Genetics, Genomics and Plant Breeding BOT-DSE-16: Genomics, Proteomics and Bioinformatics	28
3	*Pool of Generic Elective Courses (GEs) BOT-GE-09: Intelligent Systems in Plants BOT-GE-10: Informatics and Statistics for Biology and Allied Sciences BOT-GE-13: Plant Biotechnology BOT-GE-18: Genetic Engineering technologies and Applications BOT-GE-20: Genomics, Proteomics and Metabolomics	NA
4	Dissertation on Major/Minor/Academic Project	As per DU guidelines

* The syllabi of the mentioned GE courses have already been approved.

DISCIPLINE SPECIFIC CORE COURSE (DSC-20): Integrative Plant Biology

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Integrative Plant Biology DSC-20	4	2	0	2	Semester VII	Nil

Learning Objectives:

- This course would involve study of plants to enhance the understanding of organism/s and/or traits from organismal to molecular levels integrating various core disciplines of plant biology including, but not restricted to, morphology, anatomy, development, taxonomy, inheritance, physiology, biochemistry, molecular and cell biology, genomics, proteomics and bioinformatics studies along with an evolutionary context.
- Additional areas would include interactions of plants with other organisms in an ecosystem, biotic and abiotic challenges and plant responses, transgenic studies (basic and applied) and an ecological or environmental perspective.
- The course would enable development of critical thinking skills among students and enhance their problem-solving abilities. This is an important component of the course since students in the 8th semester would be involved with research at the under-graduate level and would also be eligible to apply for Ph.D. programs after B.Sc. (Hons.) – with Research in Botany.

Learning Outcomes:

- The course would allow students to integrate various sub-disciplines that have been studied over the preceding seven semesters to develop a holistic understanding of plant systems transgressing various subject areas within plant biology. The course would include two main approaches/components:
 - Integrated case studies on selected plants from algae to angiosperms including all aspects of their growth, development and applications as outlined above.
 - Selected trait- or process-based studies of plants to understand the biological, evolutionary and molecular determinants of the traits.

- Both these approaches would involve study of research and review articles that discuss contemporary questions in plant biology by integrating multiple approaches towards understanding a plant system, in addition to textbooks.
- The course design would allow students to study important paradigms in plant sciences, and train them in experimental design, data interpretation and adoption of multi-disciplinary approaches to solve scientific questions.

Theory: **30 hours**

Unit 1: Model organisms/ plant systems and trait based studies **7 hours**

Introduction, brief timeline development of *Arabidopsis* as a model system, features of model organisms ; vital information for model organisms (Microbial - Bacterial (*E.coli*), viral - TMV(any other) ; Plant systems : *Chlamydomonas*, *Neurospora*, *Marchantia*, *Physcomitrella*, *Equisetum*, *Cycas*, *Gnetum*, *Nicotiana* sp., *Daucus carota*).

Case studies on plants from algae to angiosperms

- a. The renaissance and enlightenment of *Marchantia* as a model system
- b. *Cuscuta* the Merchant of Proteins
- c. The origin of a land flora.
- d. Introduction to Systems approach for plants, basic concepts in building networks, computational tools, platforms and pipelines in systems biology ; Pan-omics.
- e. Important components of plant evolution – chloroplast acquisition, multicellularity and land colonization.
- f. Plant biotic interactions in the Sonoran Desert, current knowledge and future research perspectives.

Unit 2: Plant Developmental processes, environmental stress (biotic & abiotic) and adaptations **10 hours**

Water stress; High light stress; Temperature stress; Hypersensitive reaction; Pathogenesis Related (PR) proteins; Reactive oxygen species (ROS) –Production and scavenging mechanisms; Systemic acquired resistance; Mediation of insect and disease resistance by jasmonates. Photosynthesis: a case study, Lighting the way: Compelling open questions in photosynthesis research, Perspectives on improving photosynthesis to increase crop yield, Air plant genomes shed light on photosynthesis innovation , Alternative electron pathways of photosynthesis power green algal CO₂ capture.

Plant Developmental processes and adaptations: Molecular mechanisms underlying leaf development - morphological diversification (and beyond); stomata structure and function, Changes in root: shoot ratio, Aerenchyma development, Cuticle development and function, Genetic control of branching patterns in grass inflorescences, Floral Adaptation in plants, Anther

development—The long road to making pollen, Evolution and patterning of the ovule in seed plants, Soil minerals affect taxon-specific bacterial growth.

Unit 3: Genetic and molecular circuitry **05 hours**

- a. Molecular motors (Kinesin, dyneins, myosins) and Regulatory RNAs (Attenuators, Riboswitches, siRNAs, miRNAs, lncRNAs, eRNAs), relevant case studies for each.
- b. RNA biology in Plants - Beyond transcription: compelling open questions in plant RNA biology
- c. Small RNA-mediated DNA methylation during plant reproduction.
- d. Genome-editing: Engineering plants using diverse CRISPR-associated proteins and deregulation of genome-edited crops.

Unit 4: Emerging areas in plant biology and Applied Botany: **8 hours**

Farming in the Ocean, Drug Discovery, Biomass conversion into valuable products, Cultivation of medicinal plants, Food testing for adulterants, millets, molecular taxonomy.

Learning outcome: The course would enable the development of critical thinking skills among students and enhance their problem-solving abilities. This is an essential component of the course since students to be involved in research. Artificial Intelligence and Machine Learning in plant biology ; Nanotechnology in plant sciences; Introduction to synthetic Biology, metabolic pathway engineering, case studies of *Mycoplasma laboratorium*, Golden Rice

PRACTICALS: **60 hours**

1. Grow a model organism (of choice) in the college (in vitro cultures / garden / greenhouse etc.)
2. Design and conduct an experiment on the model organism (e.g., Antibiotic sensitivity assay in *E.coli*, oxygen evolution in aquatic plants besides *Hydrilla*)
3. Calculate mitotic index and duration of stages in mitosis in temporary preparation of normal and colchicine treated root tips.
4. Adaptations in plants; study cuticle, stomata, aerenchyma development in plants (micrographs/ temporary sections from available material).
5. ROS scavenging experiment (in case not included in Stress Physiology)
6. Study of embryo mutants, homeotic mutants in floral development (ABCDE model) in *Arabidopsis*.
7. Tools for In silico analysis - KEGG, STRING, Cytoscape,
8. Case studies in integrative approaches to understanding plants :

Broad areas of study are listed below, one recent publication from selected field could be provided and students will prepare graphical abstracts, summary and present the same :

- a. Environmental physiology
- b. Gene regulation circuitry
- c. Stress and adaptation
- d. Plant cell biology
- e. Plant growth and development
- f. Photosynthesis and carbohydrate metabolism
- g. Nutrient uptake, transport and metabolism
- h. Effective resource utilisation (water; assimilates; nutrients)
- i. Root – rhizosphere biology
- j. Reproduction, seed and fruit biology
- k. Defence and protection
- l. Building genomic circuits

SUGGESTED READINGS (Books):

- Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.
- Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA. 4. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2018). Plant Physiology and Development (6th Ed.). Sinauer Associates.
- Hopkins, W. G., & Hüner, N. P. A. (2009). Introduction to Plant Physiology (4th Ed.). Wiley.
- Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants (2nd Ed.). Wiley.
- Davies, J.A. (2018) Synthetic Biology: A very short introduction, Oxford University Press
- Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- Ghosh, Z. and Bibekanand, M. (2008). Bioinformatics: Principles and Applications. Oxford University Press. Delhi. 4. Pevsner, J. (2009). Bioinformatics and Functional Genomics. Wiley-Blackwell. U.S.A. 2nd edition.
- Campbell, A.M. and Heyer, L.J. (2007) Discovering Genomics, Proteomics and Bioinformatics. Second edition. Pearson

SUGGESTED READINGS (Selected Papers):

- Bowman., et al (2022). The renaissance and enlightenment of *Marchantia* as a model system. *The Plant Cell*, 34(10), pp.3512–3542. doi:<https://doi.org/10.1093/plcell/koac219>.
- Paterlini, A., & Helariutta, Y. (2020). *Cuscuta* the Merchant of Proteins. *Molecular Plant*, 13(4), 533-535. <https://doi.org/10.1016/j.molp.2020.01.007>.
- Romanov, M. S., Bobrov, A. V. C., Iovlev, P. S., Roslov, M. S., Zdravchev, N. S., Sorokin, A. N., ... & Kandidov, M. V. (2024). Fruit and seed structure in the ANA-grade angiosperms:

Ancestral traits and specializations. *American Journal of Botany*, 111(1), e16264. DOI: 10.1002/ajb2.16264.

- Bowman, J.L. (2022). The origin of a land flora. *Nature Plants*, 8(12), pp.1352–1369. doi:<https://doi.org/10.1038/s41477-022-01283-y>.
- Eckardt et al. (2024) Lighting the way: Compelling open questions in photosynthesis research. *The Plant Cell*, Volume 36, Issue 10, October , Pages 3914–3943, <https://doi.org/10.1093/plcell/koae203>
- Croce et al. (2024) Perspectives on improving photosynthesis to increase crop yield. *The Plant Cell*, Volume 36, Issue 10, October , Pages 3944–3973, <https://doi.org/10.1093/plcell/koae132>.
- Willoughby, A.C. (2024) Air plant genomes shed light on photosynthesis innovation. *The Plant Cell*, Volume 36, Issue 10, October , Pages 3897–3898, <https://doi.org/10.1093/plcell/koae213>.
- Gilles Peltier et al. (2024) Alternative electron pathways of photosynthesis power green algal CO₂ capture. *The Plant Cell*, Volume 36, Issue 10, October, Pages 4132–4142, <https://doi.org/10.1093/plcell/koae143>.
- Manavella et al. (2-23) Beyond transcription: compelling open questions in plant RNA biology. *The Plant Cell*, Volume 35, Issue 6, June 2023, Pages 1626–1653, <https://doi.org/10.1093/plcell/koac346>.
- Hiu Tung Chow, Rebecca A Mosher (2023) Small RNA-mediated DNA methylation during plant reproduction. *The Plant Cell*, Volume 35, Issue 6, June 2023, Pages 1787–1800, <https://doi.org/10.1093/plcell/koad010>.
- Nakayama et al. (2022) Molecular mechanisms underlying leaf development, morphological diversification, and beyond. *The Plant Cell*, Volume 34, Issue 7, July 2022, Pages 2534–254. <https://doi.org/10.1093/plcell/koac118>.
- Elizabeth A Kellogg. (2022) Genetic control of branching patterns in grass inflorescences. *The Plant Cell*, Volume 34, Issue 7, July 2022, Pages 2518–2533, <https://doi.org/10.1093/plcell/koac080>.
- D Blaine Marchant, Virginia Walbot (2022) Anther development—The long road to making pollen. *The Plant Cell*, Volume 34, Issue 12, December 2022, Pages 4677–4695, <https://doi.org/10.1093/plcell/koac287>
- Rudall, P. J. (2021) Evolution and patterning of the ovule in seed plants. *Biological Reviews*, 96(3), 2021, 943-960. doi: 10.1111/brv.12684.
- Finley, B. K., Mau, R. L., Hayer, M., Stone, B. W., Morrissey, E. M., Koch, B. J., ... & Hungate, B. A. (2022) Soil minerals affect taxon-specific bacterial growth. *The ISME journal*, 16(5), 1318-1326.
- Franklin, K. A., Sommers, P. N., Aslan, C. E., López, B. R., Bronstein, J. L., Bustamante, E., ... & Marazzi, B. (2016) Plant biotic interactions in the Sonoran Desert: current knowledge and future research perspectives. *International Journal of Plant Sciences*, Volume 177, Issue 3, 2016. Pages 217-234, <https://www.journals.uchicago.edu/doi/pdf/10.1086/684261>.
- Qamar U. Zaman (2024) Genome-editing: Engineering plants using diverse CRISPR-associated proteins and deregulation of genome-edited crops. *Trends in Biotechnology*, Volume 42, Issue 5; P560-574 May 2024.

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-13): Plant Stress Biology

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Plant Stress Biology DSE-13	4	2	0	2	Semester VII	Nil

Learning Objectives:

This course explores the physiological, biochemical, and molecular mechanisms by which plants respond to environmental stresses. It covers abiotic and biotic stress factors, their impact on plant growth and development, and adaptive mechanisms to mitigate stress effects. The course also introduces strategies for improving stress tolerance in crops. The following are the specific objectives of this course:

- Identify key abiotic and biotic stress factors affecting plants and explain the associated physiological, biochemical, and molecular responses.
- Examine plant signaling pathways and adaptive strategies such as avoidance, acclimation, and resistance under stress conditions.
- Gain hands-on experience in plant identification, vegetation assessment, and classification techniques, with emphasis on ecological and agricultural relevance.
- Apply principles from plant physiology, molecular biology, and biochemistry to analyze plant-environment interactions and stress resilience.
- Critically assess transgenic and biotechnological approaches to enhance plant tolerance to climate stress and improve crop productivity.

Learning Outcomes:

At the end of this course students will be able to:

- Identify different types of plant stresses and their effects on plant physiology.
- Understand the molecular and biochemical responses of plants to stress.
- Analyze plant adaptation and tolerance mechanisms under stress conditions.
- Explore strategies to enhance plant resilience against environmental challenges.
- Apply knowledge of plant stress biology in agricultural and environmental contexts.

Theory : **30 hours**

Unit 1: Introduction to Plant Stress Biology, Abiotic and Biotic Stresses **15 hours**

Types (abiotic and biotic), Perception, Acclimation vs Adaptation, Phenotypic plasticity.

- Drought stress- Physiological and Biochemical responses, Resistance or Tolerance mechanisms
- Salinity- Osmotic and Cytotoxic effects, Ion homeostasis, Salt-tolerant mechanisms: Developmental and Physiological protective mechanisms-exclusion vs tolerance, Osmoprotectants, Ion transporters, Compatible solutes- glycine betaine, proline
- Temperature - Cold and heat stress (in brief)
- Stress caused by Pathogens, Herbivores, Parasitic plants, Susceptibility and Resistance, PR proteins, Pattern-triggered immunity and Effector triggered immunity (in brief).

Unit 2: Stress Sensing and Signaling Mechanisms **7 hours**

Hormonal regulation (Abscisic acid, Jasmonic acid, Salicylic acid), Reactive Oxygen Species and Nitrous Oxide, Salt Overly Sensitive pathway, Late embryogenesis abundant proteins (LEA), Calcium signaling and binding proteins.

Unit 3: Stress Tolerance Mechanisms **6 hours**

Antioxidant enzymes (Superoxide dismutase, Catalase, Peroxidase), Osmolytes, Secondary metabolites (Alkaloids, Phenolics and Terpenoids), Chaperones (Heat Shock Proteins).

Unit 4: Crop Improvement Strategies **2 hours**

Traditional plant breeding (Mutation breeding, Protected cultivation) and Biotechnological approaches (brief account of stress tolerant genetically engineered plants).

PRACTICALS: **60 hours**

1. To study the effect of salt stress on seed germination percentage.
2. To study the effect of salt stress on plant shoot and root length.
3. To study the effect of stress (any one) on chlorophyll content.
4. To determine electrolyte leakage in stressed plants.
5. To determine SOD or peroxidase enzyme activity in control and stress plants.

Experiments through demonstration (through photographs)

6. To study the plant responses under environmental stress (Stomatal closure, Leaf curling, Root alteration, Stunted plant growth, Wilting).
7. To demonstrate the effect of stress on total protein through 2-D gel electrophoresis profile.
8. To study the effect of stress on plant cell wall and membrane.

9. To study the effect of biotic stress on plants through photographs (necrosis, rotting, nematode attack, SAR).

Suggested Readings:

1. Taiz, L., Zeiger, E., Moller, I. M., Murphy, A. (2018). Plant Physiology and Development, 6th edition. New York, NY: Oxford University Press, Sinauer Associates.
2. Bhatla, S.C., Lal, M.A. (2018). Plant Physiology, Development and Metabolism. Singapore: Springer Nature, Singapore Pvt. Ltd.
3. Giri, B., & Sharma, M. P. (Eds.) (2021). Plant Stress Biology: Strategies and Trends. Springer Nature.
4. Buchanan, B. B., Gruisse, W., & Jones, R. L. (Eds.) (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-14): Immunological Concepts and Applications in Plant Science

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Immunological Concepts and Applications in Plant Science DSE-14	4	2	0	2	Semester VII	Nil

Learning Objectives:

- Comprehend innate and induced plant immune responses. Recognize major plant pathogens—fungi, bacteria, viruses, and nematodes—and study their interactions with host defense systems.
- Examine the molecular and physiological basis of plant-microbe interactions and the dynamic strategies used by both.
- Utilize immunological tools and diagnostics for plant disease management, including detection and characterization of plant pathogens.
- Apply knowledge of plant immunology to develop eco-friendly, sustainable control strategies using beneficial microbes and natural compounds.
- Understand and apply plant immune principles for breeding disease-resistant crops and enhancing plant health.
- Design and conduct laboratory experiments to investigate plant immune responses and assess disease control strategies.

Learning Outcomes:

At the end of this course students will be able to:

- Describe the fundamental principles of plant immunity, including innate and induced defense mechanisms.
- Analyze interactions between plants and pathogens at the molecular and cellular levels.
- Apply immunological methods for diagnosing and managing plant diseases effectively.
- Identify major types of plant pathogens—fungi, bacteria, viruses, and nematodes—and their disease strategies.

- Explain the concept of ISR and its role in enhancing plant defense against diverse pathogens.
- Outline key signaling pathways involved in plant defense, such as MAPK cascades and calcium signaling.
- Integrate knowledge of plant immunity to design eco-friendly and sustainable disease control measures.
- Evaluate the use of plant immunity in breeding disease-resistant crops and applying beneficial microbes or natural products.

Unit 1: (i) Introduction to Immunological Concepts: 10 hours

Basic concepts of immunology, Innate and Acquired (Adaptive) immunity, Human Immune system, Humoral (antibody-mediated) and cellular (cell-mediated) Immunity, Concepts of antigen, epitope, hapten, valence, antibodies (immunoglobulins)- structure, types (IgG, IgM, IgA, IgD, and IgE) and functions, antigen-antibody reaction, antisera and vaccines. Immune system in plants, Comparison between the plant and animal immune system.

(ii) Plant Immunity:

Plant pathogens and pests (viruses, bacteria, fungi, insects, mites and nematodes), Plant-pathogen interactions; Compatible interactions (parasite virulence and host plant susceptibility), Incompatible interactions (parasite avirulence and host plant resistance), non-host and host - resistance, Horizontal and vertical resistance, concept of host range, coevolution of plant defence and pathogen attack mechanisms: the Zigzag Model.

Unit 2: Components of Plant Immunity: 10 hours

(i) Innate Immunity/ Resistance

- **Non-specific or Basal Resistance: Passive (Constitutive defenses)** including pre-existing mechanical defences (cuticle, waxes, lignified cell wall, bark, trichomes, thorns); pre-existing biochemical defences (alkaloids, phenolic compounds, terpenoids, nutrient deprivation, phytoanticipins); **Active (Inducible Defences):** Pathogen-associated molecular patterns (PAMPs), pattern-recognition receptors (PRRs), PAMP-triggered Immunity (PTI). Popular Models of PTI in plants- Flagellin-induced Resistance, Elongation Factor (Ef-tu)-induced Basal Resistance.
- **Pathogen Race-specific resistance:** Molecular Models of specific Host-pathogen Recognition, gene-for-gene or receptor-ligand model (Flor's Model), Pathogen effectors, Intracellular nucleotide-binding leucine-rich repeat receptors (NLRs), Plant Resistance (R) genes, Avirulence (Avr) proteins/ Effectors, Effector-triggered susceptibility (ETS), Effector-triggered immunity (ETI), Hypersensitive response.

(ii) Acquired Resistance : Systemic Acquired Resistance (SAR), Induced Systemic Resistance (ISR)

Unit 3: Signal Transduction Pathways activated during Plant resistance: 5 hours

- Phytohormone signaling: salicylic acid, jasmonic acid, ethylene
- Calcium signaling: Calmodulin (CaM), Calcineurin B-like proteins (CBLs) in *Arabidopsis*
- Mitogen-activated protein kinase (MAPK) Cascades
- The Oxidative burst (ROS)
- Major transcription factor families in plant immunity (WRKY, NAC, MYB, bZIP)

Unit 4: Applications of immunology in Plant Science: 5 hours

Development of disease-resistant crops, enhanced nutrient uptake, engineering enhanced resistance in crops via gene editing (e.g., CRISPR-Cas9), developing novel biopesticides/biocontrol agents based on induced systemic resistance (ISR), genetic engineering strategies for broad-spectrum resistance by Pseudo-Response Regulator (PRR) and chimeric PRR transgenes. RNAi based antiviral resistance (siRNA).

PRACTICALS 60 hours

1. To study the structure of antibody (diagrammatic and crystal structure) digitally.
2. Study of diseased plants and identification of its causal pathogen based on visually observed symptoms (Viral, bacterial, Fungal - one disease each)
3. Analysis and interpretation of digitally represented zig-zag model
4. Analysis and Interpretation of Western blots
5. Understanding the concept of immunoprecipitation by performing immunodiffusion.
6. To study the antigen-antibody reaction by ABO blood group system and Rh factor
7. Study and applications of immunological techniques: ELISA, Immunodiffusion, Radioimmunoassay.

Suggested Readings:

- Dha Bouktila and Yosra Habachi (2021) *An Introduction to Plant Immunity*: Bentham Science Publishers, Sharjah, UAE.
- Iakovidis, M., Chung, E. H., Saile, S. C., Sauberzweig, E., & El Kasmi, F. (2023). *The emerging frontier of plant immunity's core hubs*. *The FEBS journal*, 290(13), 3311–3335. <https://doi.org/10.1111/febs.16549>
- Prescott, L.M., Harley J.P., Klein D. A. (2005). *Microbiology*, 6th edition: McGraw Hill, New Delhi.

Additional Reading:

Agrios, G.S. (2005) Plant Pathology 5th Edition: Elsewhere Academic Press, Amsterdam.

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-15): Advances in Genetics, Genomics and Plant Breeding

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Advances in Genetics, Genomics and Plant Breeding DSE-15	4	2	0	2	Semester VII	Nil

Learning Objectives : This course aims to equip students with advanced knowledge and practical skills in genetics, genomics, and plant breeding to address key challenges in crop improvement.

- Develop a foundational understanding of inheritance, gene interactions, chromosomal behavior, and the application of genomics in identifying gene functions in plants.
- Acquire hands-on knowledge of breeding methods such as hybridization, mutation breeding, marker-assisted and genomic selection for crop improvement.
- Learn to formulate and execute plant breeding programs targeting agricultural challenges like yield enhancement, disease resistance, and abiotic stress tolerance.
- Understand how genetic traits interact with environmental factors to affect plant performance and adapt breeding strategies accordingly.
- Recognize the importance of plant genetic diversity and apply it effectively in breeding programs for sustainable crop development.

Learning Outcomes :

Upon successful completion of the course, students will be able to:

- Understand the core principles of genetics, including inheritance, gene interactions, and chromosomal behaviour.
- Apply genomics to identify genes and analyze their functions in plants.
- Gain hands-on expertise in modern breeding techniques such as hybridization, mutation breeding, marker-assisted selection, and genomic selection.
- Design and implement plant breeding programs aimed at yield enhancement, disease resistance, and abiotic stress tolerance.
- Analyze genotype-environment interactions to optimize plant performance through targeted breeding strategies.

- Appreciate the significance of conserving plant genetic diversity and apply it for sustainable crop improvement.

Theory : **30 Hours**

Unit 1: Chromatin Organization and Fine Structure of Gene and Molecular Cytogenetics **06 Hours**

Chromatin structure and packaging of DNA: architecture of chromosome in eukaryotes, karyotypes and ideogram. Fine structure of gene (Phage rII locus), cis-trans complementation test. Genome analysis in crops; Utilization of aneuploids (addition, deletion, substitution and nullisomic lines) in gene localization. Evolutionary significance of chromosomal aberrations in crop improvement, molecular cytogenetical tools for identification and structural analysis of genomes, introgression studies and ploidy detection.

Unit 2: Applied Genetics **04 Hours**

Applications of molecular cytogenetics: Alien gene transfer studies, gene mapping of agronomic traits and crop improvement in wheat, rice, tomato and cotton. Application of transposons in mutagenesis, genome mapping and evolution. Pedigree analysis and introduction to genetic counselling in humans; ethical, legal and social issues related to genetic analysis.

Unit 3: Current Trends in Genomics, Epigenomics and Metagenomics, Genome Editing Techniques **10 Hours**

Gene discovery and deciphering gene function for improvement of crops. Applications of genomics in agriculture, health and environment. Epigenomics: DNA methylation, histone modifications and chromatin remodelling; Epialleles: inheritance and role in genetic regulation. Basic tools for studying epigenomics: Overview of Bisulfite sequencing and ChIP-Seq. Applications in crop improvement and disease management. Introduction to metagenomics; the human microbiome: microbes and health. Environmental metagenomics: role in pollution control and ecosystem management. Introduction to genome editing, CRISPR-Cas9; applications of genome editing in agriculture and medicine. Ethical concerns: Designer babies, GMOs, and genome editing regulations.

Unit 4: Genetic Systems and Breeding Methods and Molecular Breeding **10 Hours**

Gene pools (primary, secondary and tertiary), systems of mating, breeding methods for sexually, asexually/clonally propagated crops; self-incompatibility, male sterility and apomixis. Heterosis: types, genetic and molecular basis; Inbreeding. Molecular DNA markers and mapping populations, construction of high-density maps, QTL mapping, Association mapping. Integration of genetic maps with physical maps/chromosomes. Gene tagging, Marker Assisted Selection (MAS), Bulk Segregation Analysis (BSA), Genomic selection and Genome Wide Association Studies (GWAS). Introduction to the statistical tools. Breeding for biotic and abiotic stresses, and

quality traits. Variety development and release of new varieties, Plant breeders and Farmers' rights.

PRACTICALS:

60 hours

1. Preparation of karyotype and ideogram from mitotic metaphase spread and analysis of degree of asymmetry.
2. Study of molecular cytogenetics: identification of progenitor genomes in allopolyploids crops using GISH (wheat, rice, tomato and cotton).
3. Mapping of ribosomal DNA gene using FISH.
4. Localization of Gene introgression using Fiber-FISH/ND-FISH.
5. Pedigree construction and analysis based on inheritance of monogenic traits in humans.
6. Access a plant-specific genome database (e.g., *Oryza sativa* in Gramene or *Arabidopsis thaliana* in TAIR).
7. Search for transcription factors linked to abiotic stress (e.g., drought, salinity). Note down their family (e.g., MYB, WRKY), function, and expression pattern.
8. Study of DNA methylation in plants using methylation sensitive enzymes.
9. Exploration of Single Nucleotide Polymorphisms (SNPs) in plants and their role in trait variation using Bioinformatics databases and tools.
10. Demonstration of basic method of selfing, emasculation, hybridization and crossing techniques in field/potted plants.
11. Comparison of characteristic features of released and notified varieties, hybrid and parental lines.
12. Comparison of quality parameters in improved varieties of cereals, pulses and oilseeds.
13. Genetics/Genomics/Plant breeding in News/Societal issues: presentation on a news article. Articles should have been published within last 2 years.

Suggested reading:

- Phundhan Singh (2014). Plant Breeding: Molecular and New Approaches. Kalyani Publishers
- Phundhan Singh (2015). Essentials of Plant Breeding. Kalyani Publishers
- B.D. Singh (2022). Plant Breeding: Principles and Methods, 12th Edition. MedTech Science Press.
- Arthur M. Lesk (2017), Introduction to Genomics, 3rd Edition, OUP Oxford
- Hartl, D.L. Jones, E.W (2009), Genetics: Analysis of Genes and Genomes, 7th Edition, Jones&BarlettPublishers
- Peter S Harper (2010). Practical Genetic Counselling, 7th Edition, CRC Press
- Genetics A Molecular Approach, Russell PJ, Pearson
- Introduction to Genetic Analysis, Griffith AF et al., W H Freeman & Co

- Concepts of Genetics, Klug WS&Cummings MR, Prentice-Hall, Genetics – a conceptual approach, Pierce BA, W H Freeman & Co
- Principles of Genetics, Sunstad DP & Simmons MJ, John Wiley & sons
- Genetics Analysis of Genes & Genomes, Hartl, D.L. Jones, E.W. Jones & Barlett
- Genetic Analysis, Phillip Meneely, Oxford

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-16): Genomics, Proteomics and Bioinformatics

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Genomics, Proteomics and Bioinformatics DSE-16	4	2	0	2	Semester VII	Nil

Learning Objectives:

- Introduce students to fundamental and emerging concepts in genomics, proteomics, and bioinformatics.
- Familiarize students with analytical tools and real-world applications of omics technologies across agriculture, health, and environmental sectors.
- Explore interdisciplinary fields such as metagenomics, epigenomics, and single-cell genomics and their significance in global problem-solving.
- Develop basic computational skills to utilize bioinformatics databases and tools for data interpretation in genomics and proteomics.

Learning Outcomes:

By the end of the course, students will be able to:

- Explain the principles and applications of genomics in agriculture, human health, and environmental science.
- Understand the concepts of epigenetics and demonstrate familiarity with tools used to study epigenetic modifications.
- Describe metagenomics and single-cell genomics, and their relevance in microbiome analysis and environmental monitoring.
- Understand core techniques and tools in proteomics, including post-MS data analysis, and their translational value.

- Demonstrate knowledge of bioinformatics concepts, databases, and software tools for sequence, structure, and functional analysis of biological data.

Theory : **30 Hours**

Unit 1: Genomics and Epigenetics **10 Hours**

Genomic concepts: genomes, genes, and non-coding regions, Structure of complexity of eukaryotic genome, Applications in agriculture, health, and the environment, CRISPR-Cas9: A beginner-friendly introduction to genome editing, Genomics ethics: privacy, data sharing, and equity. Epigenomics. DNA methylation and histone modifications, Overview of Bisulfite sequencing and ChIP-Seq, Role of epigenetics in stress adaptation in plants.

Unit 2: Metagenomics and Single-Cell Genomics **5 Hours**

Metagenomics: concept and applications, Human Microbiome Project (HMP), Environmental metagenomics: Role in pollution control and ecosystem management. Single-cell genomics: its concept and importance.

Unit 3: Proteomics **7 hours**

Overview of Proteomics, Complexity of protein structure (primary, secondary and tertiary), Post translational modifications (phosphorylation, glycosylation), Proteome analysis by 2-D gel electrophoresis, Edman sequencing (Methodology and limitations in protein sequencing) and MALDI-ToF (Matrix-Assisted Laser Desorption/Ionization – Time of Flight), nLC-MS/MS (nano-Liquid Chromatography coupled with Tandem Mass Spectrometry), X-ray crystallography.

Unit 4. Bioinformatics **8 hours**

Introduction to bioinformatics: definition and scope, Nucleotide and Protein databases (GenBank, UniProt, PDB), metabolic pathway database (KEGG), Search engines for databases (Entrez and PubMed), File format (FASTA), BLAST, Concept of sequence alignment, molecular phylogeny

PRACTICALS : **60 Hours**

1. Virtual Exploration of Plant Genomes:

- 1a. Access a plant-specific genome database (e.g., *Oryza sativa* in Gramene or *Arabidopsis thaliana* in TAIR).
- 1b. Search for a gene of interest (e.g., drought resistance or photosynthesis-related genes).
- 1c. Record details such as gene location, sequence, function, and related pathways.

- 1d. Compare homologous genes between two plant species using BLAST.
2. Study of GenBank and UniProt for the retrieval of nucleic acid and amino acid sequences
3. Sequence homology and gene annotation through BLAST tool.
4. Illumina sequencing through photographs.
5. Explore single nucleotide polymorphisms (SNPs) in plants and their role in trait variation.
6. Predict the structure of protein from its amino acid sequence. (Phyre 2/ Modweb/ CPH model/ Swiss Model).
7. Analysis of protein (s) on 2-D Gels, X-ray crystallography and protein microarray through photographs.
8. *In silico* analysis for PTM, Localization, and functions using the above-mentioned software.
9. Basic handling of data, transcriptome assembly, batch blast, batch primer design, setting up a local blast, basic of genome assembly, and isolation of microsatellites using MISA.

Suggested Readings (Books and Articles):

- Brown, T.A. (2017). *Genomes 4*. Garland Science. *A student-friendly introduction to genomics with clear explanations and examples.*
- Dale, J.W., & Park, S.F. (2010). *Molecular Genetics of Bacteria*. Wiley-Blackwell. *Covers foundational concepts in bacterial genomics and applications.*
- Allis, C.D., Caparros, M.-L., Jenuwein, T., & Reinberg, D. (2015). *Epigenetics*. Cold Spring Harbor Laboratory Press. *(Focus on the introductory sections for basics of DNA methylation and histone modifications.)*
- Pevsner, J. (2015). *Bioinformatics and Functional Genomics*. Wiley-Blackwell. *(Chapters on metagenomics provide a straightforward introduction with practical applications.)*
- Handelsman, J. (2004). *Metagenomics: Application in Microbial Ecology*. ASM Press. *(Focuses on simple and engaging content about microbial diversity studies.)*
- Doudna, J.A., & Sternberg, S.H. (2017). *A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution*. Houghton Mifflin Harcourt. *(Written for a general audience, this book explains CRISPR in simple terms.)*
- Regev, A. et al. (2017). "The Human Cell Atlas." *eLife*. *(Overview of single-cell genomics and its goals in mapping human cells.)*
- Varshney, R.K., Roorkiwal, M., & Sorrells, M.E. (2017). *Genomic Selection for Crop Improvement*. Springer. *(Readable sections on GWAS and genomic applications in crop breeding.)*
- Sandel, M.J. (2009). *The Case Against Perfection: Ethics in the Age of Genetic Engineering*. Harvard University Press. *(Simplifies the ethical dilemmas posed by genomics and genome editing.)*